
Docker 101

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 3

http://rictomm.me

A shipping container system for applica3ons

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 4

http://rictomm.me

Eliminate the matrix from hell

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 5

http://rictomm.me

Our training environment

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 6

http://rictomm.me

Our training environment

• If you are a+ending #DataEng

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 6

http://rictomm.me

Our training environment

• If you are a+ending #DataEng

• docker is an easy way to deploy various technologies without
affec=ng your local environment

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 6

http://rictomm.me

Our training environment

• If you are a+ending #DataEng

• docker is an easy way to deploy various technologies without
affec=ng your local environment

• you don't have to worry about networking

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 6

http://rictomm.me

Our training environment

• If you are a+ending #DataEng

• docker is an easy way to deploy various technologies without
affec=ng your local environment

• you don't have to worry about networking

• you need to take care of persistence though

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 6

http://rictomm.me

Our training environment

• If you are a+ending #DataEng

• docker is an easy way to deploy various technologies without
affec=ng your local environment

• you don't have to worry about networking

• you need to take care of persistence though

• For tes=ng purposes use Play with Docker to instantly get a
training environment

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 6

https://www.play-with-docker.com/
http://rictomm.me

Our first containers

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 7

http://rictomm.me

Objec&ves

At the end of this lesson, you will have:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 8

http://rictomm.me

Objec&ves

At the end of this lesson, you will have:

• Seen Docker in ac-on.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 8

http://rictomm.me

Objec&ves

At the end of this lesson, you will have:

• Seen Docker in ac-on.

• Started your first containers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 8

http://rictomm.me

Objec&ves

At the end of this lesson, you will have:

• Seen Docker in ac-on.

• Started your first containers.

• Understood what is an image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 8

http://rictomm.me

Objec&ves

At the end of this lesson, you will have:

• Seen Docker in ac-on.

• Started your first containers.

• Understood what is an image.

• What is a layer.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 8

http://rictomm.me

Objec&ves

At the end of this lesson, you will have:

• Seen Docker in ac-on.

• Started your first containers.

• Understood what is an image.

• What is a layer.

• The various image namespaces.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 8

http://rictomm.me

Objec&ves

At the end of this lesson, you will have:

• Seen Docker in ac-on.

• Started your first containers.

• Understood what is an image.

• What is a layer.

• The various image namespaces.

• How to search and download images.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 8

http://rictomm.me

Objec&ves

At the end of this lesson, you will have:

• Seen Docker in ac-on.

• Started your first containers.

• Understood what is an image.

• What is a layer.

• The various image namespaces.

• How to search and download images.

• Image tags and when to use them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 8

http://rictomm.me

Hello World

In your Docker environment, just run the following command:

$ docker run busybox echo hello world
hello world

(If your Docker install is brand new, you will also see a few extra
lines,
corresponding to the download of the busybox image.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 9

http://rictomm.me

That was our first container!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 10

http://rictomm.me

That was our first container!

• We used one of the smallest, simplest images available:
busybox.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 10

http://rictomm.me

That was our first container!

• We used one of the smallest, simplest images available:
busybox.

• busybox is typically used in embedded systems (phones,
routers...)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 10

http://rictomm.me

That was our first container!

• We used one of the smallest, simplest images available:
busybox.

• busybox is typically used in embedded systems (phones,
routers...)

• We ran a single process and echo'ed hello world.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 10

http://rictomm.me

A more useful container

Let's run a more exci0ng container:

$ docker run -it ubuntu
root@04c0bb0a6c07:/#

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 11

http://rictomm.me

A more useful container

Let's run a more exci0ng container:

$ docker run -it ubuntu
root@04c0bb0a6c07:/#

• This is a brand new container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 11

http://rictomm.me

A more useful container

Let's run a more exci0ng container:

$ docker run -it ubuntu
root@04c0bb0a6c07:/#

• This is a brand new container.

• It runs a bare-bones, no-frills ubuntu system.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 11

http://rictomm.me

A more useful container

Let's run a more exci0ng container:

$ docker run -it ubuntu
root@04c0bb0a6c07:/#

• This is a brand new container.

• It runs a bare-bones, no-frills ubuntu system.

• -it is shorthand for -i -t.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 11

http://rictomm.me

A more useful container

Let's run a more exci0ng container:

$ docker run -it ubuntu
root@04c0bb0a6c07:/#

• This is a brand new container.

• It runs a bare-bones, no-frills ubuntu system.

• -it is shorthand for -i -t.

• -i tells Docker to connect us to the container's stdin.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 11

http://rictomm.me

A more useful container

Let's run a more exci0ng container:

$ docker run -it ubuntu
root@04c0bb0a6c07:/#

• This is a brand new container.

• It runs a bare-bones, no-frills ubuntu system.

• -it is shorthand for -i -t.

• -i tells Docker to connect us to the container's stdin.

• -t tells Docker that we want a pseudo-terminal.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 11

http://rictomm.me

Do something in our container

Try to run figlet in our container.

root@04c0bb0a6c07:/# figlet hello
bash: figlet: command not found

Alright, we need to install it.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 12

http://rictomm.me

Install a package in our container

We want figlet, so let's install it:

root@04c0bb0a6c07:/# apt-get update
...
Fetched 1514 kB in 14s (103 kB/s)
Reading package lists... Done
root@04c0bb0a6c07:/# apt-get install figlet
Reading package lists... Done
...

One minute later, figlet is installed!
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 13

http://rictomm.me

Try to run our freshly installed program

The figlet program takes a message as parameter.

root@04c0bb0a6c07:/# figlet hello
 _ _ _
| |__ ___| | | ___
| '_ \ / _ \ | |/ _ \
| | | | __/ | | (_) |
|_| |_|___|_|_|___/

Beau%ful! .emoji[
!

]

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 14

http://rictomm.me

Coun%ng packages in the container

Let's check how many packages are installed there.

root@04c0bb0a6c07:/# dpkg -l | wc -l
190

How many packages do we have on our host?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 15

http://rictomm.me

Coun%ng packages in the container

Let's check how many packages are installed there.

root@04c0bb0a6c07:/# dpkg -l | wc -l
190

• dpkg -l lists the packages installed in our container

How many packages do we have on our host?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 15

http://rictomm.me

Coun%ng packages in the container

Let's check how many packages are installed there.

root@04c0bb0a6c07:/# dpkg -l | wc -l
190

• dpkg -l lists the packages installed in our container

• wc -l counts them

How many packages do we have on our host?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 15

http://rictomm.me

Coun%ng packages on the host

Exit the container by logging out of the shell, like you would usually do.

(E.g. with ^D or exit)

root@04c0bb0a6c07:/# exit

Now, try to:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 16

http://rictomm.me

Coun%ng packages on the host

Exit the container by logging out of the shell, like you would usually do.

(E.g. with ^D or exit)

root@04c0bb0a6c07:/# exit

Now, try to:

• run dpkg -l | wc -l. How many packages are installed?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 16

http://rictomm.me

Coun%ng packages on the host

Exit the container by logging out of the shell, like you would usually do.

(E.g. with ^D or exit)

root@04c0bb0a6c07:/# exit

Now, try to:

• run dpkg -l | wc -l. How many packages are installed?

• run figlet. Does that work?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 16

http://rictomm.me

Comparing the container and the host

Exit the container by logging out of the shell, with ^D or exit.

Now try to run figlet. Does that work?

(It shouldn't; except if, by coincidence, you are running on a
machine where figlet was installed before.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 17

http://rictomm.me

Host and containers are independent things

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Host and containers are independent things

• We ran an ubuntu container on an Linux/Windows/macOS host.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Host and containers are independent things

• We ran an ubuntu container on an Linux/Windows/macOS host.

• They have different, independent packages.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Host and containers are independent things

• We ran an ubuntu container on an Linux/Windows/macOS host.

• They have different, independent packages.

• Installing something on the host doesn't expose it to the container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Host and containers are independent things

• We ran an ubuntu container on an Linux/Windows/macOS host.

• They have different, independent packages.

• Installing something on the host doesn't expose it to the container.

• And vice-versa.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Host and containers are independent things

• We ran an ubuntu container on an Linux/Windows/macOS host.

• They have different, independent packages.

• Installing something on the host doesn't expose it to the container.

• And vice-versa.

• Even if both the host and the container have the same Linux distro!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Host and containers are independent things

• We ran an ubuntu container on an Linux/Windows/macOS host.

• They have different, independent packages.

• Installing something on the host doesn't expose it to the container.

• And vice-versa.

• Even if both the host and the container have the same Linux distro!

• We can run any container on any host.

(One excepJon: Windows containers cannot run on Linux machines; at least not
yet.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Where's our container?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 19

http://rictomm.me

Where's our container?

• Our container is now in a stopped state.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 19

http://rictomm.me

Where's our container?

• Our container is now in a stopped state.

• It s1ll exists on disk, but all compute resources have been freed
up.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 19

http://rictomm.me

Where's our container?

• Our container is now in a stopped state.

• It s1ll exists on disk, but all compute resources have been freed
up.

• We will see later how to get back to that container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 19

http://rictomm.me

Star%ng another container

What if we start a new container, and try to run figlet again?

$ docker run -it ubuntu
root@b13c164401fb:/# figlet
bash: figlet: command not found

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 20

http://rictomm.me

Star%ng another container

What if we start a new container, and try to run figlet again?

$ docker run -it ubuntu
root@b13c164401fb:/# figlet
bash: figlet: command not found

• We started a brand new container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 20

http://rictomm.me

Star%ng another container

What if we start a new container, and try to run figlet again?

$ docker run -it ubuntu
root@b13c164401fb:/# figlet
bash: figlet: command not found

• We started a brand new container.

• The basic Ubuntu image was used, and figlet is not here.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 20

http://rictomm.me

Where's my container?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 21

http://rictomm.me

Where's my container?

• Can we reuse that container that we took 1me to customize?

We can, but that's not the default workflow with Docker.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 21

http://rictomm.me

Where's my container?

• Can we reuse that container that we took 1me to customize?

We can, but that's not the default workflow with Docker.

• What's the default workflow, then?

Always start with a fresh container.

If we need something installed in our container, build a custom image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 21

http://rictomm.me

Where's my container?

• Can we reuse that container that we took 1me to customize?

We can, but that's not the default workflow with Docker.

• What's the default workflow, then?

Always start with a fresh container.

If we need something installed in our container, build a custom image.

• That seems complicated!

We'll see that it's actually pre?y easy!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 21

http://rictomm.me

Where's my container?

• Can we reuse that container that we took 1me to customize?

We can, but that's not the default workflow with Docker.

• What's the default workflow, then?

Always start with a fresh container.

If we need something installed in our container, build a custom image.

• That seems complicated!

We'll see that it's actually pre?y easy!

• And what's the point?

This puts a strong emphasis on automaBon and repeatability. Let's see why ...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 21

http://rictomm.me

Local development with Docker

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Local development with Docker

• With Docker, the workflow looks like this:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Local development with Docker

• With Docker, the workflow looks like this:

• create container image with our dev environment

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Local development with Docker

• With Docker, the workflow looks like this:

• create container image with our dev environment

• run container with that image

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Local development with Docker

• With Docker, the workflow looks like this:

• create container image with our dev environment

• run container with that image

• work on project

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Local development with Docker

• With Docker, the workflow looks like this:

• create container image with our dev environment

• run container with that image

• work on project

• when done, shut down container

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Local development with Docker

• With Docker, the workflow looks like this:

• create container image with our dev environment

• run container with that image

• work on project

• when done, shut down container

• next =me we need to work on project, start a new container

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Local development with Docker

• With Docker, the workflow looks like this:

• create container image with our dev environment

• run container with that image

• work on project

• when done, shut down container

• next =me we need to work on project, start a new container

• if we need to tweak the environment, we create a new image

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Local development with Docker

• With Docker, the workflow looks like this:

• create container image with our dev environment

• run container with that image

• work on project

• when done, shut down container

• next =me we need to work on project, start a new container

• if we need to tweak the environment, we create a new image

• We have a clear defini=on of our environment, and can share it reliably with others.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Local development with Docker

• With Docker, the workflow looks like this:

• create container image with our dev environment

• run container with that image

• work on project

• when done, shut down container

• next =me we need to work on project, start a new container

• if we need to tweak the environment, we create a new image

• We have a clear defini=on of our environment, and can share it reliably with others.

• Let's see in the next chapters how to bake a custom image with figlet!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 22

http://rictomm.me

Build first Image

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 23

http://rictomm.me

What is an image?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

• These files form the root filesystem of our container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

• These files form the root filesystem of our container.

• The metadata can indicate a number of things, e.g.:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

• These files form the root filesystem of our container.

• The metadata can indicate a number of things, e.g.:

• the author of the image

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

• These files form the root filesystem of our container.

• The metadata can indicate a number of things, e.g.:

• the author of the image

• the command to execute in the container when star?ng it

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

• These files form the root filesystem of our container.

• The metadata can indicate a number of things, e.g.:

• the author of the image

• the command to execute in the container when star?ng it

• environment variables to be set

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

• These files form the root filesystem of our container.

• The metadata can indicate a number of things, e.g.:

• the author of the image

• the command to execute in the container when star?ng it

• environment variables to be set

• etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

• These files form the root filesystem of our container.

• The metadata can indicate a number of things, e.g.:

• the author of the image

• the command to execute in the container when star?ng it

• environment variables to be set

• etc.

• Images are made of layers, conceptually stacked on top of each other.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

• These files form the root filesystem of our container.

• The metadata can indicate a number of things, e.g.:

• the author of the image

• the command to execute in the container when star?ng it

• environment variables to be set

• etc.

• Images are made of layers, conceptually stacked on top of each other.

• Each layer can add, change, and remove files and/or metadata.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

What is an image?

• Image = files + metadata

• These files form the root filesystem of our container.

• The metadata can indicate a number of things, e.g.:

• the author of the image

• the command to execute in the container when star?ng it

• environment variables to be set

• etc.

• Images are made of layers, conceptually stacked on top of each other.

• Each layer can add, change, and remove files and/or metadata.

• Images can share layers to op?mize disk usage, transfer ?mes, and memory use.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 24

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

• CentOS base layer

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

• CentOS base layer

• Packages and configura7on files added by our local IT

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

• CentOS base layer

• Packages and configura7on files added by our local IT

• JRE

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

• CentOS base layer

• Packages and configura7on files added by our local IT

• JRE

• Tomcat

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

• CentOS base layer

• Packages and configura7on files added by our local IT

• JRE

• Tomcat

• Our applica7on's dependencies

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

• CentOS base layer

• Packages and configura7on files added by our local IT

• JRE

• Tomcat

• Our applica7on's dependencies

• Our applica7on code and assets

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

• CentOS base layer

• Packages and configura7on files added by our local IT

• JRE

• Tomcat

• Our applica7on's dependencies

• Our applica7on code and assets

• Our applica7on configura7on

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

The read-write layer

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 26

http://rictomm.me

Differences between containers and images

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 27

http://rictomm.me

Differences between containers and images

• An image is a read-only filesystem.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 27

http://rictomm.me

Differences between containers and images

• An image is a read-only filesystem.

• A container is an encapsulated set of processes,

running in a read-write copy of that filesystem.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 27

http://rictomm.me

Differences between containers and images

• An image is a read-only filesystem.

• A container is an encapsulated set of processes,

running in a read-write copy of that filesystem.

• To op<mize container boot <me, copy-on-write is used
instead of regular copy.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 27

http://rictomm.me

Differences between containers and images

• An image is a read-only filesystem.

• A container is an encapsulated set of processes,

running in a read-write copy of that filesystem.

• To op<mize container boot <me, copy-on-write is used
instead of regular copy.

• docker run starts a container from a given image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 27

http://rictomm.me

Mul$ple containers sharing the same image

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 28

http://rictomm.me

Comparison with object-oriented programming

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 29

http://rictomm.me

Comparison with object-oriented programming

• Images are conceptually similar to classes.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 29

http://rictomm.me

Comparison with object-oriented programming

• Images are conceptually similar to classes.

• Layers are conceptually similar to inheritance.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 29

http://rictomm.me

Comparison with object-oriented programming

• Images are conceptually similar to classes.

• Layers are conceptually similar to inheritance.

• Containers are conceptually similar to instances.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 29

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

• We don't.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

• We don't.

• We create a new container from that image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

• We don't.

• We create a new container from that image.

• Then we make changes to that container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

• We don't.

• We create a new container from that image.

• Then we make changes to that container.

• When we are sa7sfied with those changes, we transform them into a
new layer.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

• We don't.

• We create a new container from that image.

• Then we make changes to that container.

• When we are sa7sfied with those changes, we transform them into a
new layer.

• A new image is created by stacking the new layer on top of the old image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 30

http://rictomm.me

A chicken-and-egg problem

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 31

http://rictomm.me

A chicken-and-egg problem

• The only way to create an image is by
"freezing" a container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 31

http://rictomm.me

A chicken-and-egg problem

• The only way to create an image is by
"freezing" a container.

• The only way to create a container is by
instan8a8ng an image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 31

http://rictomm.me

A chicken-and-egg problem

• The only way to create an image is by
"freezing" a container.

• The only way to create a container is by
instan8a8ng an image.

• Help!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 31

http://rictomm.me

Crea%ng the first images

There is a special empty image called scratch.

The docker import command loads a tarball into Docker.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 32

http://rictomm.me

Crea%ng the first images

There is a special empty image called scratch.

• It allows to build from scratch.

The docker import command loads a tarball into Docker.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 32

http://rictomm.me

Crea%ng the first images

There is a special empty image called scratch.

• It allows to build from scratch.

The docker import command loads a tarball into Docker.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 32

http://rictomm.me

Crea%ng the first images

There is a special empty image called scratch.

• It allows to build from scratch.

The docker import command loads a tarball into Docker.

• The imported tarball becomes a standalone image.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 32

http://rictomm.me

Crea%ng the first images

There is a special empty image called scratch.

• It allows to build from scratch.

The docker import command loads a tarball into Docker.

• The imported tarball becomes a standalone image.

• That new image has a single layer.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 32

http://rictomm.me

Crea%ng other images

docker commit

docker build (used 99% of the -me)

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 33

http://rictomm.me

Crea%ng other images

docker commit

• Saves all the changes made to a container into a new layer.

docker build (used 99% of the -me)

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 33

http://rictomm.me

Crea%ng other images

docker commit

• Saves all the changes made to a container into a new layer.

• Creates a new image (effec9vely a copy of the container).

docker build (used 99% of the -me)

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 33

http://rictomm.me

Crea%ng other images

docker commit

• Saves all the changes made to a container into a new layer.

• Creates a new image (effec9vely a copy of the container).

docker build (used 99% of the -me)

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 33

http://rictomm.me

Crea%ng other images

docker commit

• Saves all the changes made to a container into a new layer.

• Creates a new image (effec9vely a copy of the container).

docker build (used 99% of the -me)

• Performs a repeatable build sequence.

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 33

http://rictomm.me

Crea%ng other images

docker commit

• Saves all the changes made to a container into a new layer.

• Creates a new image (effec9vely a copy of the container).

docker build (used 99% of the -me)

• Performs a repeatable build sequence.

• This is the preferred method!

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 33

http://rictomm.me

Images namespaces

There are three namespaces:

Let's explain each of them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 34

http://rictomm.me

Images namespaces

There are three namespaces:

• Official images

e.g. ubuntu, busybox ...

Let's explain each of them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 34

http://rictomm.me

Images namespaces

There are three namespaces:

• Official images

e.g. ubuntu, busybox ...

• User (and organiza6ons) images

e.g. jpetazzo/clock

Let's explain each of them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 34

http://rictomm.me

Images namespaces

There are three namespaces:

• Official images

e.g. ubuntu, busybox ...

• User (and organiza6ons) images

e.g. jpetazzo/clock

• Self-hosted images

e.g. registry.example.com:5000/my-private/image

Let's explain each of them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 34

http://rictomm.me

Root namespace

The root namespace is for official images.

They are gated by Docker Inc.

They are generally authored and maintained by third par3es.

Those images include:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 35

http://rictomm.me

Root namespace

The root namespace is for official images.

They are gated by Docker Inc.

They are generally authored and maintained by third par3es.

Those images include:

• Small, "swiss-army-knife" images like busybox.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 35

http://rictomm.me

Root namespace

The root namespace is for official images.

They are gated by Docker Inc.

They are generally authored and maintained by third par3es.

Those images include:

• Small, "swiss-army-knife" images like busybox.

• Distro images to be used as bases for your builds, like ubuntu, fedora...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 35

http://rictomm.me

Root namespace

The root namespace is for official images.

They are gated by Docker Inc.

They are generally authored and maintained by third par3es.

Those images include:

• Small, "swiss-army-knife" images like busybox.

• Distro images to be used as bases for your builds, like ubuntu, fedora...

• Ready-to-use components and services, like redis, postgresql...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 35

http://rictomm.me

Root namespace

The root namespace is for official images.

They are gated by Docker Inc.

They are generally authored and maintained by third par3es.

Those images include:

• Small, "swiss-army-knife" images like busybox.

• Distro images to be used as bases for your builds, like ubuntu, fedora...

• Ready-to-use components and services, like redis, postgresql...

• Over 150 at this point!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 35

http://rictomm.me

User namespace

The user namespace holds images for Docker Hub users and organiza8ons.

For example:

jpetazzo/clock

The Docker Hub user is:

jpetazzo

The image name is:

clock

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 36

http://rictomm.me

Showing current images

Let's look at what images are on our host now.

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
fedora latest ddd5c9c1d0f2 3 days ago 204.7 MB
centos latest d0e7f81ca65c 3 days ago 196.6 MB
ubuntu latest 07c86167cdc4 4 days ago 188 MB
redis latest 4f5f397d4b7c 5 days ago 177.6 MB
postgres latest afe2b5e1859b 5 days ago 264.5 MB
alpine latest 70c557e50ed6 5 days ago 4.798 MB
debian latest f50f9524513f 6 days ago 125.1 MB
busybox latest 3240943c9ea3 2 weeks ago 1.114 MB
training/namer latest 902673acc741 9 months ago 289.3 MB
jpetazzo/clock latest 12068b93616f 12 months ago 2.433 MB

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 37

http://rictomm.me

Downloading images

There are two ways to download images.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 38

http://rictomm.me

Downloading images

There are two ways to download images.

• Explicitly, with docker pull.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 38

http://rictomm.me

Downloading images

There are two ways to download images.

• Explicitly, with docker pull.

• Implicitly, when execu4ng docker run and the image is not
found locally.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 38

http://rictomm.me

Pulling an image

$ docker pull debian:jessie
Pulling repository debian
b164861940b8: Download complete
b164861940b8: Pulling image (jessie) from debian
d1881793a057: Download complete

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 39

http://rictomm.me

Pulling an image

$ docker pull debian:jessie
Pulling repository debian
b164861940b8: Download complete
b164861940b8: Pulling image (jessie) from debian
d1881793a057: Download complete

• As seen previously, images are made up of layers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 39

http://rictomm.me

Pulling an image

$ docker pull debian:jessie
Pulling repository debian
b164861940b8: Download complete
b164861940b8: Pulling image (jessie) from debian
d1881793a057: Download complete

• As seen previously, images are made up of layers.

• Docker has downloaded all the necessary layers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 39

http://rictomm.me

Pulling an image

$ docker pull debian:jessie
Pulling repository debian
b164861940b8: Download complete
b164861940b8: Pulling image (jessie) from debian
d1881793a057: Download complete

• As seen previously, images are made up of layers.

• Docker has downloaded all the necessary layers.

• In this example, :jessie indicates which exact version of Debian
we would like.

It is a version tag.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 39

http://rictomm.me

Image and tags

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 40

http://rictomm.me

Image and tags

• Images can have tags.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 40

http://rictomm.me

Image and tags

• Images can have tags.

• Tags define image versions or variants.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 40

http://rictomm.me

Image and tags

• Images can have tags.

• Tags define image versions or variants.

• docker pull ubuntu will refer to ubuntu:latest.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 40

http://rictomm.me

Image and tags

• Images can have tags.

• Tags define image versions or variants.

• docker pull ubuntu will refer to ubuntu:latest.

• The :latest tag is generally updated o;en.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 40

http://rictomm.me

When to (not) use tags

Don't specify tags: Do specify tags:

This is similar to what we would do with
pip install, npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags:

• When doing rapid tes0ng and
prototyping.

Do specify tags:

This is similar to what we would do with
pip install, npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags:

• When doing rapid tes0ng and
prototyping.

• When experimen0ng.

Do specify tags:

This is similar to what we would do with
pip install, npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags:

• When doing rapid tes0ng and
prototyping.

• When experimen0ng.

• When you want the latest version.

Do specify tags:

This is similar to what we would do with
pip install, npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags:

• When doing rapid tes0ng and
prototyping.

• When experimen0ng.

• When you want the latest version.

Do specify tags:

This is similar to what we would do with
pip install, npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags:

• When doing rapid tes0ng and
prototyping.

• When experimen0ng.

• When you want the latest version.

Do specify tags:

• When recording a procedure into a
script.

This is similar to what we would do with
pip install, npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags:

• When doing rapid tes0ng and
prototyping.

• When experimen0ng.

• When you want the latest version.

Do specify tags:

• When recording a procedure into a
script.

• When going to produc3on.

This is similar to what we would do with
pip install, npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags:

• When doing rapid tes0ng and
prototyping.

• When experimen0ng.

• When you want the latest version.

Do specify tags:

• When recording a procedure into a
script.

• When going to produc3on.

• To ensure that the same version will
be used everywhere.

This is similar to what we would do with
pip install, npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags:

• When doing rapid tes0ng and
prototyping.

• When experimen0ng.

• When you want the latest version.

Do specify tags:

• When recording a procedure into a
script.

• When going to produc3on.

• To ensure that the same version will
be used everywhere.

• To ensure repeatability later.

This is similar to what we would do with
pip install, npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

Sec$on summary

We've learned how to:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 42

http://rictomm.me

Sec$on summary

We've learned how to:

• Understand images and layers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 42

http://rictomm.me

Sec$on summary

We've learned how to:

• Understand images and layers.

• Understand Docker image namespacing.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 42

http://rictomm.me

Sec$on summary

We've learned how to:

• Understand images and layers.

• Understand Docker image namespacing.

• Search and download images.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 42

http://rictomm.me

Building Docker images with a
Dockerfile

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 43

http://rictomm.me

Objec&ves

We will build a container image automa2cally, with a Dockerfile.

At the end of this lesson, you will be able to:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 44

http://rictomm.me

Objec&ves

We will build a container image automa2cally, with a Dockerfile.

At the end of this lesson, you will be able to:

• Write a Dockerfile.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 44

http://rictomm.me

Objec&ves

We will build a container image automa2cally, with a Dockerfile.

At the end of this lesson, you will be able to:

• Write a Dockerfile.

• Build an image from a Dockerfile.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 44

http://rictomm.me

Dockerfile overview

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 45

http://rictomm.me

Dockerfile overview

• A Dockerfile is a build recipe for a Docker image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 45

http://rictomm.me

Dockerfile overview

• A Dockerfile is a build recipe for a Docker image.

• It contains a series of instruc9ons telling Docker how an image is
constructed.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 45

http://rictomm.me

Dockerfile overview

• A Dockerfile is a build recipe for a Docker image.

• It contains a series of instruc9ons telling Docker how an image is
constructed.

• The docker build command builds an image from a
Dockerfile.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 45

http://rictomm.me

Wri$ng our first Dockerfile

Our Dockerfile must be in a new, empty directory.

$ mkdir myimage

$ cd myimage
$ vim Dockerfile

Of course, you can use any other editor of your choice.
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 46

http://rictomm.me

Wri$ng our first Dockerfile

Our Dockerfile must be in a new, empty directory.

1. Create a directory to hold our Dockerfile.

$ mkdir myimage

$ cd myimage
$ vim Dockerfile

Of course, you can use any other editor of your choice.
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 46

http://rictomm.me

Wri$ng our first Dockerfile

Our Dockerfile must be in a new, empty directory.

1. Create a directory to hold our Dockerfile.

$ mkdir myimage

$ cd myimage
$ vim Dockerfile

Of course, you can use any other editor of your choice.
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 46

http://rictomm.me

Wri$ng our first Dockerfile

Our Dockerfile must be in a new, empty directory.

1. Create a directory to hold our Dockerfile.

$ mkdir myimage

1. Create a Dockerfile inside this directory.

$ cd myimage
$ vim Dockerfile

Of course, you can use any other editor of your choice.
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 46

http://rictomm.me

Type this into our Dockerfile...

FROM ubuntu
RUN apt-get update
RUN apt-get install figlet

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 47

http://rictomm.me

Type this into our Dockerfile...

FROM ubuntu
RUN apt-get update
RUN apt-get install figlet

• FROM indicates the base image for our build.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 47

http://rictomm.me

Type this into our Dockerfile...

FROM ubuntu
RUN apt-get update
RUN apt-get install figlet

• FROM indicates the base image for our build.

• Each RUN line will be executed by Docker during the build.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 47

http://rictomm.me

Type this into our Dockerfile...

FROM ubuntu
RUN apt-get update
RUN apt-get install figlet

• FROM indicates the base image for our build.

• Each RUN line will be executed by Docker during the build.

• Our RUN commands must be non-interac/ve.

(No input can be provided to Docker during the build.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 47

http://rictomm.me

Type this into our Dockerfile...

FROM ubuntu
RUN apt-get update
RUN apt-get install figlet

• FROM indicates the base image for our build.

• Each RUN line will be executed by Docker during the build.

• Our RUN commands must be non-interac/ve.

(No input can be provided to Docker during the build.)

• In many cases, we will add the -y flag to apt-get.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 47

http://rictomm.me

Build it!

Save our file, then execute:

$ docker build -t figlet .

We will talk more about the build context later.

To keep things simple for now: this is the directory where our Dockerfile
is located.
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 48

http://rictomm.me

Build it!

Save our file, then execute:

$ docker build -t figlet .

• -t indicates the tag to apply to the image.

We will talk more about the build context later.

To keep things simple for now: this is the directory where our Dockerfile
is located.
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 48

http://rictomm.me

Build it!

Save our file, then execute:

$ docker build -t figlet .

• -t indicates the tag to apply to the image.

• . indicates the loca3on of the build context.

We will talk more about the build context later.

To keep things simple for now: this is the directory where our Dockerfile
is located.
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 48

http://rictomm.me

What happens when we build the image?

The output of docker build
looks like this:

docker build -t figlet .
Sending build context to Docker daemon 2.048kB
Step 1/3 : FROM ubuntu
 ---> f975c5035748
Step 2/3 : RUN apt-get update
 ---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd
 ---> eb8d9b561b37
Step 3/3 : RUN apt-get install figlet
 ---> Running in c29230d70f9b
(...output of the RUN command...)
Removing intermediate container c29230d70f9b
 ---> 0dfd7a253f21
Successfully built 0dfd7a253f21
Successfully tagged figlet:latest

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 49

http://rictomm.me

What happens when we build the image?

The output of docker build
looks like this:

docker build -t figlet .
Sending build context to Docker daemon 2.048kB
Step 1/3 : FROM ubuntu
 ---> f975c5035748
Step 2/3 : RUN apt-get update
 ---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd
 ---> eb8d9b561b37
Step 3/3 : RUN apt-get install figlet
 ---> Running in c29230d70f9b
(...output of the RUN command...)
Removing intermediate container c29230d70f9b
 ---> 0dfd7a253f21
Successfully built 0dfd7a253f21
Successfully tagged figlet:latest

• The output of the RUN
commands has been omi3ed.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 49

http://rictomm.me

What happens when we build the image?

The output of docker build
looks like this:

docker build -t figlet .
Sending build context to Docker daemon 2.048kB
Step 1/3 : FROM ubuntu
 ---> f975c5035748
Step 2/3 : RUN apt-get update
 ---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd
 ---> eb8d9b561b37
Step 3/3 : RUN apt-get install figlet
 ---> Running in c29230d70f9b
(...output of the RUN command...)
Removing intermediate container c29230d70f9b
 ---> 0dfd7a253f21
Successfully built 0dfd7a253f21
Successfully tagged figlet:latest

• The output of the RUN
commands has been omi3ed.

• Let's explain what this output
means.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 49

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

• The build context is the . directory given to docker build.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

• The build context is the . directory given to docker build.

• It is sent (as an archive) by the Docker client to the Docker daemon.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

• The build context is the . directory given to docker build.

• It is sent (as an archive) by the Docker client to the Docker daemon.

• This allows to use a remote machine to build using local files.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

• The build context is the . directory given to docker build.

• It is sent (as an archive) by the Docker client to the Docker daemon.

• This allows to use a remote machine to build using local files.

• Be careful (or paBent) if that directory is big and your link is slow.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

• The build context is the . directory given to docker build.

• It is sent (as an archive) by the Docker client to the Docker daemon.

• This allows to use a remote machine to build using local files.

• Be careful (or paBent) if that directory is big and your link is slow.

• You can speed up the process with a .dockerignore file

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 50

https://docs.docker.com/engine/reference/builder/%5B%5Bdockerignore-file%5D%5D
http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

• The build context is the . directory given to docker build.

• It is sent (as an archive) by the Docker client to the Docker daemon.

• This allows to use a remote machine to build using local files.

• Be careful (or paBent) if that directory is big and your link is slow.

• You can speed up the process with a .dockerignore file

• It tells docker to ignore specific files in the directory

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 50

https://docs.docker.com/engine/reference/builder/%5B%5Bdockerignore-file%5D%5D
http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

• The build context is the . directory given to docker build.

• It is sent (as an archive) by the Docker client to the Docker daemon.

• This allows to use a remote machine to build using local files.

• Be careful (or paBent) if that directory is big and your link is slow.

• You can speed up the process with a .dockerignore file

• It tells docker to ignore specific files in the directory

• Only ignore files that you won't need in the build context!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 50

https://docs.docker.com/engine/reference/builder/%5B%5Bdockerignore-file%5D%5D
http://rictomm.me

Execu&ng each step

Step 2/3 : RUN apt-get update
 ---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd
 ---> eb8d9b561b37

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 51

http://rictomm.me

Execu&ng each step

Step 2/3 : RUN apt-get update
 ---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd
 ---> eb8d9b561b37

• A container (e01b294dbffd) is created from the base image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 51

http://rictomm.me

Execu&ng each step

Step 2/3 : RUN apt-get update
 ---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd
 ---> eb8d9b561b37

• A container (e01b294dbffd) is created from the base image.

• The RUN command is executed in this container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 51

http://rictomm.me

Execu&ng each step

Step 2/3 : RUN apt-get update
 ---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd
 ---> eb8d9b561b37

• A container (e01b294dbffd) is created from the base image.

• The RUN command is executed in this container.

• The container is commi9ed into an image (eb8d9b561b37).

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 51

http://rictomm.me

Execu&ng each step

Step 2/3 : RUN apt-get update
 ---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd
 ---> eb8d9b561b37

• A container (e01b294dbffd) is created from the base image.

• The RUN command is executed in this container.

• The container is commi9ed into an image (eb8d9b561b37).

• The build container (e01b294dbffd) is removed.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 51

http://rictomm.me

Execu&ng each step

Step 2/3 : RUN apt-get update
 ---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd
 ---> eb8d9b561b37

• A container (e01b294dbffd) is created from the base image.

• The RUN command is executed in this container.

• The container is commi9ed into an image (eb8d9b561b37).

• The build container (e01b294dbffd) is removed.

• The output of this step will be the base image for the next one.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 51

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

• A#er each build step, Docker takes a snapshot of the resul8ng image.

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

• A#er each build step, Docker takes a snapshot of the resul8ng image.

• Before execu8ng a step, Docker checks if it has already built the same sequence.

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

• A#er each build step, Docker takes a snapshot of the resul8ng image.

• Before execu8ng a step, Docker checks if it has already built the same sequence.

• Docker uses the exact strings defined in your Dockerfile, so:

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

• A#er each build step, Docker takes a snapshot of the resul8ng image.

• Before execu8ng a step, Docker checks if it has already built the same sequence.

• Docker uses the exact strings defined in your Dockerfile, so:

• RUN apt-get install figlet cowsay

 is different from

 RUN apt-get install cowsay figlet

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

• A#er each build step, Docker takes a snapshot of the resul8ng image.

• Before execu8ng a step, Docker checks if it has already built the same sequence.

• Docker uses the exact strings defined in your Dockerfile, so:

• RUN apt-get install figlet cowsay

 is different from

 RUN apt-get install cowsay figlet

• RUN apt-get update is not re-executed when the mirrors are updated

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 52

http://rictomm.me

Running the image

The resul)ng image is not different from the one produced manually.

$ docker run -ti figlet
root@91f3c974c9a1:/# figlet hello
 _ _ _
| |__ ___| | | ___
| '_ \ / _ \ | |/ _ \
| | | | __/ | | (_) |
|_| |_|___|_|_|___/

Yay! .emoji[
!

]
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 53

http://rictomm.me

The Container Network Model

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 54

http://rictomm.me

Objec&ves

We will learn about the CNM (Container Network Model).

At the end of this lesson, you will be able to:

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 55

http://rictomm.me

Objec&ves

We will learn about the CNM (Container Network Model).

At the end of this lesson, you will be able to:

• Create a private network for a group of containers.

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 55

http://rictomm.me

Objec&ves

We will learn about the CNM (Container Network Model).

At the end of this lesson, you will be able to:

• Create a private network for a group of containers.

• Use container naming to connect services together.

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 55

http://rictomm.me

Objec&ves

We will learn about the CNM (Container Network Model).

At the end of this lesson, you will be able to:

• Create a private network for a group of containers.

• Use container naming to connect services together.

• Dynamically connect and disconnect containers to networks.

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 55

http://rictomm.me

Objec&ves

We will learn about the CNM (Container Network Model).

At the end of this lesson, you will be able to:

• Create a private network for a group of containers.

• Use container naming to connect services together.

• Dynamically connect and disconnect containers to networks.

• Set the IP address of a container.

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 55

http://rictomm.me

The Container Network Model

Docker has "networks".

We can manage them with the docker network commands; for instance:

$ docker network ls
NETWORK ID NAME DRIVER
6bde79dfcf70 bridge bridge
8d9c78725538 none null
eb0eeab782f4 host host
4c1ff84d6d3f blog-dev overlay
228a4355d548 blog-prod overlay

New networks can be created (with docker network create).

(Note: networks none and host are special; let's set them aside for now.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 56

http://rictomm.me

What's a network?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 57

http://rictomm.me

What's a network?

• Conceptually, a Docker "network" is a virtual switch

(we can also think about it like a VLAN, or a WiFi SSID, for instance)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 57

http://rictomm.me

What's a network?

• Conceptually, a Docker "network" is a virtual switch

(we can also think about it like a VLAN, or a WiFi SSID, for instance)

• By default, containers are connected to a single network

(but they can be connected to zero, or many networks, even dynamically)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 57

http://rictomm.me

What's a network?

• Conceptually, a Docker "network" is a virtual switch

(we can also think about it like a VLAN, or a WiFi SSID, for instance)

• By default, containers are connected to a single network

(but they can be connected to zero, or many networks, even dynamically)

• Each network has its own subnet (IP address range)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 57

http://rictomm.me

What's a network?

• Conceptually, a Docker "network" is a virtual switch

(we can also think about it like a VLAN, or a WiFi SSID, for instance)

• By default, containers are connected to a single network

(but they can be connected to zero, or many networks, even dynamically)

• Each network has its own subnet (IP address range)

• A network can be local (to a single Docker Engine) or global (span mulKple hosts)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 57

http://rictomm.me

What's a network?

• Conceptually, a Docker "network" is a virtual switch

(we can also think about it like a VLAN, or a WiFi SSID, for instance)

• By default, containers are connected to a single network

(but they can be connected to zero, or many networks, even dynamically)

• Each network has its own subnet (IP address range)

• A network can be local (to a single Docker Engine) or global (span mulKple hosts)

• Containers can have network aliases providing DNS-based service discovery

(and each network has its own "domain", "zone", or "scope")

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 57

http://rictomm.me

Service discovery

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 58

http://rictomm.me

Service discovery

• A container can be given a network alias

(e.g. with docker run --net some-network --net-alias db ...)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 58

http://rictomm.me

Service discovery

• A container can be given a network alias

(e.g. with docker run --net some-network --net-alias db ...)

• The containers running in the same network can resolve that network alias

(i.e. if they do a DNS lookup on db, it will give the container's address)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 58

http://rictomm.me

Service discovery

• A container can be given a network alias

(e.g. with docker run --net some-network --net-alias db ...)

• The containers running in the same network can resolve that network alias

(i.e. if they do a DNS lookup on db, it will give the container's address)

• We can have a different db container in each network

(this avoids naming conflicts between different stacks)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 58

http://rictomm.me

Service discovery

• A container can be given a network alias

(e.g. with docker run --net some-network --net-alias db ...)

• The containers running in the same network can resolve that network alias

(i.e. if they do a DNS lookup on db, it will give the container's address)

• We can have a different db container in each network

(this avoids naming conflicts between different stacks)

• When we name a container, it automaFcally adds the name as a network alias

(i.e. docker run --name xyz ... is like docker run --net-alias xyz ...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 58

http://rictomm.me

Network isola-on

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 59

http://rictomm.me

Network isola-on

• Networks are isolated

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 59

http://rictomm.me

Network isola-on

• Networks are isolated

• By default, containers in network A cannot reach those in network B

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 59

http://rictomm.me

Network isola-on

• Networks are isolated

• By default, containers in network A cannot reach those in network B

• A container connected to both networks A and B can act as a router
or proxy

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 59

http://rictomm.me

Network isola-on

• Networks are isolated

• By default, containers in network A cannot reach those in network B

• A container connected to both networks A and B can act as a router
or proxy

• Published ports are always reachable through the Docker host
address

(docker run -P ... makes a container port available to everyone)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 59

http://rictomm.me

How to use networks

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 60

http://rictomm.me

How to use networks

• We typically create one network per "stack" or app that we deploy

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 60

http://rictomm.me

How to use networks

• We typically create one network per "stack" or app that we deploy

• More complex apps or stacks might require mul;ple networks

(e.g. frontend, backend, ...)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 60

http://rictomm.me

How to use networks

• We typically create one network per "stack" or app that we deploy

• More complex apps or stacks might require mul;ple networks

(e.g. frontend, backend, ...)

• Networks allow us to deploy mul;ple copies of the same stack

(e.g. prod, dev, pr-442,)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 60

http://rictomm.me

How to use networks

• We typically create one network per "stack" or app that we deploy

• More complex apps or stacks might require mul;ple networks

(e.g. frontend, backend, ...)

• Networks allow us to deploy mul;ple copies of the same stack

(e.g. prod, dev, pr-442,)

• If we use Docker Compose, this is managed automa;cally for us

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 60

http://rictomm.me

Single container in a Docker network

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 61

http://rictomm.me

Two containers on a single Docker network

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 62

http://rictomm.me

Two containers on two Docker networks

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 63

http://rictomm.me

Crea%ng a network

Let's create a network called dev.

$ docker network create dev
4c1ff84d6d3f1733d3e233ee039cac276f425a9d5228a4355d54878293a889ba

The network is now visible with the network ls command:

$ docker network ls
NETWORK ID NAME DRIVER
6bde79dfcf70 bridge bridge
8d9c78725538 none null
eb0eeab782f4 host host
4c1ff84d6d3f dev bridge

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 64

http://rictomm.me

Placing containers on a network

We will create a named container on this network.

It will be reachable with its name, es.

$ docker run -d --name es --net dev elasticsearch:2
8abb80e229ce8926c7223beb69699f5f34d6f1d438bfc5682db893e798046863

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 65

http://rictomm.me

Communica)on between containers

Now, create another container on this network.

$ docker run -ti --net dev alpine sh
root@0ecccdfa45ef:/#

From this new container, we
can resolve and ping the other
one, using its assigned name:

/ # ping es
PING es (172.18.0.2) 56(84) bytes of data.
64 bytes from es.dev (172.18.0.2): icmp_seq=1 ttl=64 time=0.221 ms
64 bytes from es.dev (172.18.0.2): icmp_seq=2 ttl=64 time=0.114 ms
64 bytes from es.dev (172.18.0.2): icmp_seq=3 ttl=64 time=0.114 ms
^C
--- es ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.114/0.149/0.221/0.052 ms
root@0ecccdfa45ef:/#

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 66

http://rictomm.me

Resolving container addresses

Since Docker Engine 1.10, name resolu6on
is implemented by a dynamic resolver.

Archeological note: when CNM was
intoduced (in Docker Engine 1.9,
November 2015)
name resoluEon was implemented with /
etc/hosts, and it was updated each Eme
CONTAINERs were added/removed. This
could cause interesEng race condiEons
since /etc/hosts was a bind-mount (and
couldn't be updated atomically).

[root@0ecccdfa45ef /]# cat /etc/hosts
172.18.0.3 0ecccdfa45ef
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
172.18.0.2 es
172.18.0.2 es.dev

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 67

http://rictomm.me

Service discovery with containers

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 68

http://rictomm.me

Service discovery with containers

• Let's try to run an applica2on that requires two containers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 68

http://rictomm.me

Service discovery with containers

• Let's try to run an applica2on that requires two containers.

• The first container is a web server.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 68

http://rictomm.me

Service discovery with containers

• Let's try to run an applica2on that requires two containers.

• The first container is a web server.

• The other one is a redis data store.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 68

http://rictomm.me

Service discovery with containers

• Let's try to run an applica2on that requires two containers.

• The first container is a web server.

• The other one is a redis data store.

• We will place them both on the dev network created before.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 68

http://rictomm.me

Running the web server

Start the container, exposing all its ports:

$ docker run --net dev -d -P jpetazzo/trainingwheels

Check the port that has been allocated to it:

$ docker ps -l

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 69

http://rictomm.me

Running the web server

• The applica+on is provided by the container image jpetazzo/
trainingwheels.

Start the container, exposing all its ports:

$ docker run --net dev -d -P jpetazzo/trainingwheels

Check the port that has been allocated to it:

$ docker ps -l

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 69

http://rictomm.me

Running the web server

• The applica+on is provided by the container image jpetazzo/
trainingwheels.

• We don't know much about it so we will try to run it and see what happens!

Start the container, exposing all its ports:

$ docker run --net dev -d -P jpetazzo/trainingwheels

Check the port that has been allocated to it:

$ docker ps -l

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 69

http://rictomm.me

Test the web server

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 70

http://rictomm.me

Test the web server

• If we connect to the applica0on now,
we will see an error page:

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 70

http://rictomm.me

Test the web server

• If we connect to the applica0on now,
we will see an error page:

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 70

http://rictomm.me

Test the web server

• If we connect to the applica0on now,
we will see an error page:

• This is because the Redis service is not
running.

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 70

http://rictomm.me

Test the web server

• If we connect to the applica0on now,
we will see an error page:

• This is because the Redis service is not
running.

• This container tries to resolve the name
redis.

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 70

http://rictomm.me

Start the data store

Start the container:

$ docker run --net dev --net-alias redis -d redis

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 71

http://rictomm.me

Start the data store

• We need to start a Redis container.

Start the container:

$ docker run --net dev --net-alias redis -d redis

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 71

http://rictomm.me

Start the data store

• We need to start a Redis container.

• That container must be on the same network as the web server.

Start the container:

$ docker run --net dev --net-alias redis -d redis

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 71

http://rictomm.me

Start the data store

• We need to start a Redis container.

• That container must be on the same network as the web server.

• It must have the right network alias (redis) so the applica>on
can find it.

Start the container:

$ docker run --net dev --net-alias redis -d redis

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 71

http://rictomm.me

Test the web server again

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 72

http://rictomm.me

Test the web server again

• If we connect to the applica0on now,
we should see that the app is working
correctly:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 72

http://rictomm.me

Test the web server again

• If we connect to the applica0on now,
we should see that the app is working
correctly:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 72

http://rictomm.me

Test the web server again

• If we connect to the applica0on now,
we should see that the app is working
correctly:

• When the app tries to resolve redis,
instead of ge4ng a DNS error, it gets
the IP address of our Redis container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 72

http://rictomm.me

A few words on scope

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 73

http://rictomm.me

A few words on scope

• Container names are unique (there can be only one --name redis)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 73

http://rictomm.me

A few words on scope

• Container names are unique (there can be only one --name redis)

• Network aliases are not unique

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 73

http://rictomm.me

A few words on scope

• Container names are unique (there can be only one --name redis)

• Network aliases are not unique

• We can have the same network alias in different networks:
bash
docker run --net dev --net-alias redis ...
docker run --net prod --net-alias redis ...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 73

http://rictomm.me

A few words on scope

• Container names are unique (there can be only one --name redis)

• Network aliases are not unique

• We can have the same network alias in different networks:
bash
docker run --net dev --net-alias redis ...
docker run --net prod --net-alias redis ...

• We can even have mul>ple containers with the same alias in the same network

(in that case, we get mul>ple DNS entries, aka "DNS round robin")

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 73

http://rictomm.me

Names are local to each network

Let's try to ping our es container from another container, when that
other container is not on the dev network.

$ docker run --rm alpine ping es
ping: bad address 'es'

Names can be resolved only when containers are on the same
network.

Containers can contact each other only when they are on the same
network (you can try to ping using the IP address to verify).
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 74

http://rictomm.me

Docker Compose

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 75

http://rictomm.me

Compose for development stacks

Dockerfiles are great to build container images.

But what if we work with a complex stack made of mul5ple containers?

Eventually, we will want to write some custom scripts and automa5on to
build, run, and connect
our containers together.

There is a be*er way: using Docker Compose.

In this sec*on, you will use Compose to bootstrap a development
environment.
Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 76

http://rictomm.me

What is Docker Compose?

Docker Compose (formerly known as fig) is an external tool.

Unlike the Docker Engine, it is wri3en in Python. It's open source as well.

The general idea of Compose is to enable a very simple, powerful
onboarding workflow:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 77

http://rictomm.me

What is Docker Compose?

Docker Compose (formerly known as fig) is an external tool.

Unlike the Docker Engine, it is wri3en in Python. It's open source as well.

The general idea of Compose is to enable a very simple, powerful
onboarding workflow:

1. Checkout your code.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 77

http://rictomm.me

What is Docker Compose?

Docker Compose (formerly known as fig) is an external tool.

Unlike the Docker Engine, it is wri3en in Python. It's open source as well.

The general idea of Compose is to enable a very simple, powerful
onboarding workflow:

1. Checkout your code.

2. Run docker-compose up.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 77

http://rictomm.me

What is Docker Compose?

Docker Compose (formerly known as fig) is an external tool.

Unlike the Docker Engine, it is wri3en in Python. It's open source as well.

The general idea of Compose is to enable a very simple, powerful
onboarding workflow:

1. Checkout your code.

2. Run docker-compose up.

3. Your app is up and running!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 77

http://rictomm.me

Compose overview

This is how you work with Compose:

Before diving in, let's see a small example of Compose in ac7on.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Compose overview

This is how you work with Compose:

• You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

Before diving in, let's see a small example of Compose in ac7on.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Compose overview

This is how you work with Compose:

• You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

• You run docker-compose up.

Before diving in, let's see a small example of Compose in ac7on.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Compose overview

This is how you work with Compose:

• You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

• You run docker-compose up.

• Compose automa=cally pulls images, builds containers, and starts them.

Before diving in, let's see a small example of Compose in ac7on.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Compose overview

This is how you work with Compose:

• You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

• You run docker-compose up.

• Compose automa=cally pulls images, builds containers, and starts them.

• Compose can set up links, volumes, and other Docker op=ons for you.

Before diving in, let's see a small example of Compose in ac7on.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Compose overview

This is how you work with Compose:

• You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

• You run docker-compose up.

• Compose automa=cally pulls images, builds containers, and starts them.

• Compose can set up links, volumes, and other Docker op=ons for you.

• Compose can run the containers in the background, or in the foreground.

Before diving in, let's see a small example of Compose in ac7on.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Compose overview

This is how you work with Compose:

• You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

• You run docker-compose up.

• Compose automa=cally pulls images, builds containers, and starts them.

• Compose can set up links, volumes, and other Docker op=ons for you.

• Compose can run the containers in the background, or in the foreground.

• When containers are running in the foreground, their aggregated output is shown.

Before diving in, let's see a small example of Compose in ac7on.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 79

http://rictomm.me

Checking if Compose is installed

If you are using the official training virtual machines, Compose has been
pre-installed.

If you are using Docker for Mac/Windows or the Docker Toolbox, Compose
comes with them.

If you are on Linux (desktop or server environment), you will need to install
Compose from its release page or with pip install docker-compose.

You can always check that it is installed by running:

$ docker-compose --version

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 80

https://github.com/docker/compose/releases
http://rictomm.me

Launching Our First Stack with Compose

First step: clone the source code for the app we will be working on.

$ cd
$ git clone --branch docker https://github.com/DataSystemsGroupUT/dataeng.git
...
$ cd dataeng

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 81

http://rictomm.me

Launching Our First Stack with Compose

Second step: start your app.

$ docker-compose up

Watch Compose build and run your app with the correct
parameters,
including linking the relevant containers together.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 82

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 83

http://rictomm.me

Launching Our First Stack with Compose

In a new terminal

$ docker ps

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 84

http://rictomm.me

Stopping the app

When you hit ^C, Compose tries to gracefully terminate all of the
containers.

A"er ten seconds (or if you press ^C again) it will forcibly kill
them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 85

http://rictomm.me

The docker-compose.yml file

Here is the file used in the demo:

version: "3"

services:
 web:
 build: web
 ports:
 - 80
 db:
 build: db
 words:
 build: words
 ports:
 - 8080

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 86

http://rictomm.me

Compose file structure

A Compose file has mul.ple sec.ons:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 87

http://rictomm.me

Compose file structure

A Compose file has mul.ple sec.ons:

• version is mandatory. (We should use "2" or later; version 1 is deprecated.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 87

http://rictomm.me

Compose file structure

A Compose file has mul.ple sec.ons:

• version is mandatory. (We should use "2" or later; version 1 is deprecated.)

• services is mandatory. A service is one or more replicas of the same image running as
containers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 87

http://rictomm.me

Compose file structure

A Compose file has mul.ple sec.ons:

• version is mandatory. (We should use "2" or later; version 1 is deprecated.)

• services is mandatory. A service is one or more replicas of the same image running as
containers.

• networks is op=onal and indicates to which networks containers should be connected.

(By default, containers will be connected on a private, per-compose-file network.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 87

http://rictomm.me

Compose file structure

A Compose file has mul.ple sec.ons:

• version is mandatory. (We should use "2" or later; version 1 is deprecated.)

• services is mandatory. A service is one or more replicas of the same image running as
containers.

• networks is op=onal and indicates to which networks containers should be connected.

(By default, containers will be connected on a private, per-compose-file network.)

• volumes is op=onal and can define volumes to be used and/or shared by the
containers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 87

http://rictomm.me

Compose file versions

The Docker documenta0on
has excellent informa0on about the Compose file format if you need to know
more about versions.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 88

https://docs.docker.com/compose/compose-file/
http://rictomm.me

Compose file versions

• Version 1 is legacy and shouldn't be used.

(If you see a Compose file without version and services, it's a legacy v1
file.)

The Docker documenta0on
has excellent informa0on about the Compose file format if you need to know
more about versions.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 88

https://docs.docker.com/compose/compose-file/
http://rictomm.me

Compose file versions

• Version 1 is legacy and shouldn't be used.

(If you see a Compose file without version and services, it's a legacy v1
file.)

• Version 2 added support for networks and volumes.

The Docker documenta0on
has excellent informa0on about the Compose file format if you need to know
more about versions.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 88

https://docs.docker.com/compose/compose-file/
http://rictomm.me

Compose file versions

• Version 1 is legacy and shouldn't be used.

(If you see a Compose file without version and services, it's a legacy v1
file.)

• Version 2 added support for networks and volumes.

• Version 3 added support for deployment opEons (scaling, rolling updates, etc).

The Docker documenta0on
has excellent informa0on about the Compose file format if you need to know
more about versions.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 88

https://docs.docker.com/compose/compose-file/
http://rictomm.me

Containers in docker-compose.yml

Each service in the YAML file must contain either build, or image.

The other parameters are op,onal.

They encode the parameters that you would typically add to docker run.

Some%mes they have several minor improvements.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 89

http://rictomm.me

Containers in docker-compose.yml

Each service in the YAML file must contain either build, or image.

• build indicates a path containing a Dockerfile.

The other parameters are op,onal.

They encode the parameters that you would typically add to docker run.

Some%mes they have several minor improvements.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 89

http://rictomm.me

Containers in docker-compose.yml

Each service in the YAML file must contain either build, or image.

• build indicates a path containing a Dockerfile.

• image indicates an image name (local, or on a registry).

The other parameters are op,onal.

They encode the parameters that you would typically add to docker run.

Some%mes they have several minor improvements.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 89

http://rictomm.me

Containers in docker-compose.yml

Each service in the YAML file must contain either build, or image.

• build indicates a path containing a Dockerfile.

• image indicates an image name (local, or on a registry).

• If both are specified, an image will be built from the build directory and named image.

The other parameters are op,onal.

They encode the parameters that you would typically add to docker run.

Some%mes they have several minor improvements.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 89

http://rictomm.me

Container parameters

For the full list, check: h1ps://docs.docker.com/compose/compose-file/

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 90

http://rictomm.me

Container parameters

• command indicates what to run (like CMD in a Dockerfile).

For the full list, check: h1ps://docs.docker.com/compose/compose-file/

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 90

http://rictomm.me

Container parameters

• command indicates what to run (like CMD in a Dockerfile).

• ports translates to one (or mul8ple) -p op8ons to map ports.

You can specify local ports (i.e. x:y to expose public port x).

For the full list, check: h1ps://docs.docker.com/compose/compose-file/

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 90

http://rictomm.me

Container parameters

• command indicates what to run (like CMD in a Dockerfile).

• ports translates to one (or mul8ple) -p op8ons to map ports.

You can specify local ports (i.e. x:y to expose public port x).

• volumes translates to one (or mul8ple) -v op8ons.

You can use rela8ve paths here.

For the full list, check: h1ps://docs.docker.com/compose/compose-file/

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 90

http://rictomm.me

Compose commands

We already saw docker-compose up, but another one is docker-
compose build.

It will execute docker build for all containers men2oning a build path.

It can also be invoked automa2cally when star2ng the applica2on:

docker-compose up --build

Another common op,on is to start containers in the background:

docker-compose up -d

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 91

http://rictomm.me

Check container status

It can be tedious to check the status of your containers with docker ps,
especially when running mul9ple apps at the same 9me.

Compose makes it easier; with docker-compose ps you will see only
the status of the
containers of the current stack:

$ docker-compose ps
Name Command State Ports
--
trainingwheels_redis_1 /entrypoint.sh red Up 6379/tcp
trainingwheels_www_1 python counter.py Up 0.0.0.0:8000->5000/tcp

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 92

http://rictomm.me

Cleaning up (1)

If you have started your applica3on in the background with Compose and
want to stop it easily, you can use the kill command:

$ docker-compose kill

Likewise, docker-compose rm will let you remove containers (a5er confirma7on):

$ docker-compose rm
Going to remove trainingwheels_redis_1, trainingwheels_www_1
Are you sure? [yN] y
Removing trainingwheels_redis_1...
Removing trainingwheels_www_1...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 93

http://rictomm.me

Cleaning up (2)

Alterna(vely, docker-compose down will stop and remove containers.

It will also remove other resources, like networks that were created for the
applica7on.

$ docker-compose down
Stopping trainingwheels_www_1 ... done
Stopping trainingwheels_redis_1 ... done
Removing trainingwheels_www_1 ... done
Removing trainingwheels_redis_1 ... done

Use docker-compose down -v to remove everything including volumes.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 94

http://rictomm.me

Special handling of volumes

Compose is smart. If your container uses volumes, when you restart
your
applica8on, Compose will create a new container, but carefully re-
use
the volumes it was using previously.

This makes it easy to upgrade a stateful service, by pulling its
new image and just restar;ng your stack with Compose.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 95

http://rictomm.me

Compose project name

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

• When you run a Compose command, Compose infers the "project name" of your app.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

• When you run a Compose command, Compose infers the "project name" of your app.

• By default, the "project name" is the name of the current directory.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

• When you run a Compose command, Compose infers the "project name" of your app.

• By default, the "project name" is the name of the current directory.

• For instance, if you are in /home/zelda/src/ocarina, the project name is
ocarina.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

• When you run a Compose command, Compose infers the "project name" of your app.

• By default, the "project name" is the name of the current directory.

• For instance, if you are in /home/zelda/src/ocarina, the project name is
ocarina.

• All resources created by Compose are tagged with this project name.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

• When you run a Compose command, Compose infers the "project name" of your app.

• By default, the "project name" is the name of the current directory.

• For instance, if you are in /home/zelda/src/ocarina, the project name is
ocarina.

• All resources created by Compose are tagged with this project name.

• The project name also appears as a prefix of the names of the resources.

E.g. in the previous example, service www will create a container ocarina_www_1.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

• When you run a Compose command, Compose infers the "project name" of your app.

• By default, the "project name" is the name of the current directory.

• For instance, if you are in /home/zelda/src/ocarina, the project name is
ocarina.

• All resources created by Compose are tagged with this project name.

• The project name also appears as a prefix of the names of the resources.

E.g. in the previous example, service www will create a container ocarina_www_1.

• The project name can be overridden with docker-compose -p.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

