Docker 101

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

A shipping container system for applications

: : Ce :
£ 9 Static website “® UserDB oo Web frontend oo Queue ¢s Analytics DB & g
8 © ®
N S5
5 588
g S8
(&) [
=3l An engine that enables any z &
= payload to be encapsulated ~ T
S as a lightweight, portable, »
self-sufficient container...
...that can be manipulated using
5 B standard operations and run 3
z2g consistently on virtually any 8 o
S 3z E hardware platform 53
QT o -~ -
£cE —— o 3
g £ ‘>: . — a &
o - e —— L et o
- .” = —— = =X
- 0
- =
* Development QA server Customer Data Public Cloud Production Cluster Contributor’s <
docker VM Center laptop

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Eliminate the matrix from hell

Developmen Single Prod Onsite Public CI Cwmw Customer
tVM L Server Cluster s s laptop Servers

& —

docker -— -

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Our training environment

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Our training environment

e |fyou are attending #Datakng

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Our training environment

e |fyou are attending #Datakng

e docker is an easy way to deploy various technologies without
affecting your local environment

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Our training environment

e |fyou are attending #Datakng

e docker is an easy way to deploy various technologies without
affecting your local environment

e you don't have to worry about networking

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Our training environment

e |fyou are attending #Datakng

e docker is an easy way to deploy various technologies without
affecting your local environment

e you don't have to worry about networking

e you need to take care of persistence though

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Our training environment

e |fyou are attending #Datakng

e docker is an easy way to deploy various technologies without
affecting your local environment

e you don't have to worry about networking
e you need to take care of persistence though

e For testing purposes use Play with Docker to instantly get a
training environment

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

https://www.play-with-docker.com/
http://rictomm.me

Our first containers

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Objectives

At the end of this lesson, you will have:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Objectives

At the end of this lesson, you will have:

e Seen Docker in action.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Objectives

At the end of this lesson, you will have:

e Seen Docker in action.

e Started your first containers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Objectives

At the end of this lesson, you will have:

e Seen Docker in action.
e Started your first containers.

 Understood what is an image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Objectives

At the end of this lesson, you will have:

e Seen Docker in action.
e Started your first containers.
 Understood what is an image.

e Whatis a layer.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Objectives

At the end of this lesson, you will have:

e Seen Docker in action.

e Started your first containers.
 Understood what is an image.
e Whatis a layer.

e The various image namespaces.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Objectives

At the end of this lesson, you will have:

e Seen Docker in action.

e Started your first containers.
 Understood what is an image.

e Whatis a layer.

e The various image namespaces.

e How to search and download images.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Objectives

At the end of this lesson, you will have:

e Seen Docker in action.

e Started your first containers.
 Understood what is an image.

e Whatis a layer.

e The various image namespaces.

e How to search and download images.

e |Image tags and when to use them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Hello World

In your Docker environment, just run the following command:

$ docker run busybox echo hello world
hello world

(If your Docker install is brand new, you will also see a few extra
lines,
corresponding to the download of the busybox image.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

That was our first container!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

10

http://rictomm.me

That was our first container!

e We used one of the smallest, simplest images available:
busybox.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

10

http://rictomm.me

That was our first container!

e We used one of the smallest, simplest images available:
busybox.

 busybox is typically used in embedded systems (phones,
routers...)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

10

http://rictomm.me

That was our first container!

e We used one of the smallest, simplest images available:
busybox.

 busybox is typically used in embedded systems (phones,
routers...)

e We ran a single process and echo'ed hello world.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

10

http://rictomm.me

A more useful container

Let's run a more exciting container:

$ docker run -it ubuntu
root@d4cdbbba6becO/ : /#

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

11

http://rictomm.me

A more useful container

Let's run a more exciting container:

$ docker run -it ubuntu
root@d4cdbbba6becO/ : /#

e This is a brand new container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

11

http://rictomm.me

A more useful container

Let's run a more exciting container:

$ docker run -it ubuntu
root@d4cdbbba6becO/ : /#

e This is a brand new container.

e |t runs a bare-bones, no-frills ubuntu system.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

11

http://rictomm.me

A more useful container

Let's run a more exciting container:

$ docker run -it ubuntu
root@d4cdbbba6becO/ : /#

 This is a brand new container.
e |t runs a bare-bones, no-frills ubuntu system.

e -itisshorthand for -i -t.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

11

http://rictomm.me

A more useful container

Let's run a more exciting container:

$ docker run -it ubuntu
root@d4cdbbba6becO/ : /#

 This is a brand new container.
e |t runs a bare-bones, no-frills ubuntu system.
e -itisshorthand for -1 -t.

e -7 tells Docker to connect us to the container's stdin.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

11

http://rictomm.me

A more useful container

Let's run a more exciting container:

$ docker run -it ubuntu
root@d4cdbbba6becO/ : /#

e This is a brand new container.
e |t runs a bare-bones, no-frills ubuntu system.
e -itisshorthand for -i -t.
o -1 tells Docker to connect us to the container's stdin.

e -t tells Docker that we want a pseudo-terminal.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

11

http://rictomm.me

Do something in our container

Try to run £iglet in our container.

root@®4cObba6bcOd/ . /# figlet hello
bash: figlet: command not found

Alright, we need to install it.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

12

http://rictomm.me

Install a package in our container

We want figlet, so let's install it:

root@@4cObbabecd/: /# apt-get update

Fetched 1514 kB in 14s (103 kB/s)

Reading package lists... Done
root@@4cObbaébcd/ . /# apt-get install figlet
Reading package lists... Done

One minute later, figlet is installed!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

13

http://rictomm.me

Try to run our freshly installed program

The £iglet program takes a message as parameter.

root@®4cObba6bcOd/ . /# figlet hello

0

N NI
/
|

\

Beautiful! .emoji[@®]

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

14

http://rictomm.me

Counting packages in the container

Let's check how many packages are installed there.

root@@4cObblabcd/ . /# dpkg -L | wec -1
190

How many packages do we have on our host?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

15

http://rictomm.me

Counting packages in the container

Let's check how many packages are installed there.

root@@4cdbblabcd’/ . /# dpkg -L | wec -L
190

e dpkg -1 lists the packages installed in our container

How many packages do we have on our host?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

15

http://rictomm.me

Counting packages in the container

Let's check how many packages are installed there.

root@@4cdbblabcd’/ . /# dpkg -L | wec -L
190

e dpkg -1 lists the packages installed in our container

e wc -1 countsthem

How many packages do we have on our host?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

15

http://rictomm.me

Counting packages on the host

Exit the container by logging out of the shell, like you would usually do.

(E.g. with AD or exit)
root@d4cObbbabcd/ . /# exit

Now, try to:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 16

http://rictomm.me

Counting packages on the host

Exit the container by logging out of the shell, like you would usually do.
(E.g. with AD or exit)

root@d4cObbbabcd/ . /# exit

Now, try to:

e rundpkg -1 | wc -Ll.How many packages are installed?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 16

http://rictomm.me

Counting packages on the host

Exit the container by logging out of the shell, like you would usually do.
(E.g. with AD or exit)

root@d4cObbbabcd/ . /# exit

Now, try to:

e rundpkg -1 | wc -Ll.How many packages are installed?

e run figlet. Does that work?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 16

http://rictomm.me

Comparing the container and the host

Exit the container by logging out of the shell, with D or exit.
Now try to run £iglet. Does that work?

(It shouldn't; except if, by coincidence, you are running on a
machine where figlet was installed before.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

17

http://rictomm.me

Host and containers are independent things

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

18

http://rictomm.me

Host and containers are independent things

e We ran an ubuntu container on an Linux/Windows/macOS host.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

18

http://rictomm.me

Host and containers are independent things

e We ran an ubuntu container on an Linux/Windows/macOS host.

 They have different, independent packages.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

18

http://rictomm.me

Host and containers are independent things

e We ran an ubuntu container on an Linux/Windows/macOS host.
 They have different, independent packages.

e Installing something on the host doesn't expose it to the container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

18

http://rictomm.me

Host and containers are independent things

e We ran an ubuntu container on an Linux/Windows/macOS host.
 They have different, independent packages.
e Installing something on the host doesn't expose it to the container.

e And vice-versa.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Host and containers are independent things

 We ran an ubuntu container on an Linux/Windows/macQOS host.
 They have different, independent packages.

e Installing something on the host doesn't expose it to the container.
* And vice-versa.

e Even if both the host and the container have the same Linux distro!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Host and containers are independent things

 We ran an ubuntu container on an Linux/Windows/macQOS host.
 They have different, independent packages.

e Installing something on the host doesn't expose it to the container.
* And vice-versa.

e Even if both the host and the container have the same Linux distro!
 \We can run any container on any host.

(One exception: Windows containers cannot run on Linux machines; at least not
yet.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 18

http://rictomm.me

Where's our container?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

19

http://rictomm.me

Where's our container?

e QOur container is now in a stopped state.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

19

http://rictomm.me

Where's our container?

e QOur container is now in a stopped state.

e |t still exists on disk, but all compute resources have been freed
up.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

19

http://rictomm.me

Where's our container?

e QOur container is now in a stopped state.

e |t still exists on disk, but all compute resources have been freed
up.

e We will see later how to get back to that container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

19

http://rictomm.me

Starting another container

What if we start a new container, and try to run £iglet again?

$ docker run -it ubuntu
root@bl3cl64401fb:/# figlet
bash: figlet: command not found

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

20

http://rictomm.me

Starting another container

What if we start a new container, and try to run £iglet again?

$ docker run -it ubuntu
root@bl3cl64401fb:/# figlet
bash: figlet: command not found

e We started a brand new container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

20

http://rictomm.me

Starting another container

What if we start a new container, and try to run £iglet again?

$ docker run -it ubuntu
root@bl3cl64401fb:/# figlet
bash: figlet: command not found

e We started a brand new container.

 The basic Ubuntu image was used, and figlet is not here.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

20

http://rictomm.me

Where's my container?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

21

http://rictomm.me

Where's my container?

e Can we reuse that container that we took time to customize?

We can, but that's not the default workflow with Docker.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

21

http://rictomm.me

Where's my container?

e Can we reuse that container that we took time to customize?
We can, but that's not the default workflow with Docker.

What's the default workflow, then?

Always start with a fresh container.

If we need something installed in our container, build a custom image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

21

http://rictomm.me

Where's my container?

e Can we reuse that container that we took time to customize?
We can, but that's not the default workflow with Docker.

What's the default workflow, then?

Always start with a fresh container.

If we need something installed in our container, build a custom image.

e That seems complicated!

We'll see that it's actually pretty easy!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

21

http://rictomm.me

Where's my container?

e Can we reuse that container that we took time to customize?
We can, but that's not the default workflow with Docker.
e What's the default workflow, then?

Always start with a fresh container.

If we need something installed in our container, build a custom image.
e That seems complicated!

We'll see that it's actually pretty easy!
 And what's the point?

This puts a strong emphasis on automation and repeatability. Let's see why ...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 21

http://rictomm.me

Local development with Docker

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Local development with Docker

 With Docker, the workflow looks like this:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Local development with Docker

 With Docker, the workflow looks like this:

e create container image with our dev environment

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Local development with Docker

 With Docker, the workflow looks like this:
e create container image with our dev environment

e run container with that image

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Local development with Docker

 With Docker, the workflow looks like this:

e create container image with our dev environment
e run container with that image

e work on project

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Local development with Docker

 With Docker, the workflow looks like this:

e create container image with our dev environment
e run container with that image

e work on project

e when done, shut down container

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Local development with Docker

 With Docker, the workflow looks like this:
e create container image with our dev environment
e run container with that image
e work on project
 when done, shut down container

e next time we need to work on project, start a new container

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Local development with Docker

 With Docker, the workflow looks like this:
e create container image with our dev environment
e run container with that image
e work on project
 when done, shut down container
e next time we need to work on project, start a new container

e if we need to tweak the environment, we create a new image

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Local development with Docker

 With Docker, the workflow looks like this:
e create container image with our dev environment
e run container with that image
e work on project
 when done, shut down container
e next time we need to work on project, start a new container
e if we need to tweak the environment, we create a new image

e We have a clear definition of our environment, and can share it reliably with others.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Local development with Docker

 With Docker, the workflow looks like this:
e create container image with our dev environment
e run container with that image
e work on project
 when done, shut down container
e next time we need to work on project, start a new container
e if we need to tweak the environment, we create a new image
e We have a clear definition of our environment, and can share it reliably with others.

e Let's see in the next chapters how to bake a custom image with £figlet!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

22

http://rictomm.me

Riccardo Tommasini -

Build first Image

<

riccardo.tommasini@ut.ee - @rictomm

23

http://rictomm.me

What is an image?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata

e These files form the root filesystem of our container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata
e These files form the root filesystem of our container.

e The metadata can indicate a number of things, e.g.:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata
e These files form the root filesystem of our container.

e The metadata can indicate a number of things, e.g.:

e the author of the image

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata

e These files form the root filesystem of our container.

e The metadata can indicate a number of things, e.g.:
e the author of the image

e the command to execute in the container when starting it

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata
e These files form the root filesystem of our container.
e The metadata can indicate a number of things, e.g.:
e the author of the image
e the command to execute in the container when starting it

e environment variables to be set

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata
e These files form the root filesystem of our container.
e The metadata can indicate a number of things, e.g.:

e the author of the image

the command to execute in the container when starting it
e environment variables to be set

e etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata
e These files form the root filesystem of our container.
e The metadata can indicate a number of things, e.g.:

e the author of the image

the command to execute in the container when starting it
e environment variables to be set
e etc.

e Images are made of layers, conceptually stacked on top of each other.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata
e These files form the root filesystem of our container.
e The metadata can indicate a number of things, e.g.:

e the author of the image

the command to execute in the container when starting it
e environment variables to be set
e etc.
e Images are made of layers, conceptually stacked on top of each other.

e Each layer can add, change, and remove files and/or metadata.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

What is an image?

e Image = files + metadata
e These files form the root filesystem of our container.
e The metadata can indicate a number of things, e.g.:

e the author of the image

the command to execute in the container when starting it
e environment variables to be set
e etc.
e Images are made of layers, conceptually stacked on top of each other.

e Each layer can add, change, and remove files and/or metadata.

* |Images can share layers to optimize disk usage, transfer times, and memory use.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

24

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

e CentOS base layer

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

e CentOS base layer

e Packages and configuration files added by our local IT

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

e CentOS base layer
e Packages and configuration files added by our local IT

 JRE

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

e CentOS base layer
e Packages and configuration files added by our local IT

 JRE

e Tomcat

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

e CentOS base layer

e Packages and configuration files added by our local IT
 JRE

e Tomcat

e QOur application's dependencies

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

e CentOS base layer

e Packages and configuration files added by our local IT
 JRE

e Tomcat

e QOur application's dependencies

e QOur application code and assets

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

Example for a Java webapp

Each of the following items will correspond to one layer:

e CentOS base layer

e Packages and configuration files added by our local IT
 JRE

e Tomcat

e QOur application's dependencies

e QOur application code and assets

e QOur application configuration

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 25

http://rictomm.me

The read-write layer

+«—— Container layer

91e54dfb1179

c22013c84729

d74508fb6632 1.895 KB

194.5 KB

d3alf33e8a5a 188.1 MB

ubuntu:15.04

> |mage layers (R/0)

Container

(based on ubuntu:15.04 image)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

26

http://rictomm.me

Differences between containers and images

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

27

http://rictomm.me

Differences between containers and images

e Animage is a read-only filesystem.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

27

http://rictomm.me

Differences between containers and images

e An image is a read-only filesystem.
e A container is an encapsulated set of processes,

running in a read-write copy of that filesystem.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

27

http://rictomm.me

Differences between containers and images

e An image is a read-only filesystem.
e A container is an encapsulated set of processes,
running in a read-write copy of that filesystem.

e To optimize container boot time, copy-on-write is used
instead of regular copy.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

27

http://rictomm.me

Differences between containers and images

e An image is a read-only filesystem.
e A container is an encapsulated set of processes,
running in a read-write copy of that filesystem.

e To optimize container boot time, copy-on-write is used
instead of regular copy.

e docker run starts a container from a given image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 27

http://rictomm.me

Multiple containers sharing the same image

T

d74508fb6632 1.895 KB

91e54dfb1179

£

€22013c84729 194.5 KB

d3alf33e8a5a 188.1 MB

ubuntu:15.04 Image

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Comparison with object-oriented programming

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

29

http://rictomm.me

Comparison with object-oriented programming

* |mages are conceptually similar to classes.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

29

http://rictomm.me

Comparison with object-oriented programming

* |mages are conceptually similar to classes.

e Layers are conceptually similar to inheritance.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

29

http://rictomm.me

Comparison with object-oriented programming

* |mages are conceptually similar to classes.
e Layers are conceptually similar to inheritance.

e Containers are conceptually similar to instances.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

29

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

e We don't.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

e We don't.

e We create a new container from that image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

e We don't.
e We create a new container from that image.

e Then we make changes to that container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

e We don't.
e We create a new container from that image.
e Then we make changes to that container.

e When we are satisfied with those changes, we transform them into a
new layer.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

30

http://rictomm.me

Wait a minute...

If an image is read-only, how do we change it?

e We don't.
e We create a new container from that image.
e Then we make changes to that container.

e When we are satisfied with those changes, we transform them into a
new layer.

e A new image is created by stacking the new layer on top of the old image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 30

http://rictomm.me

A chicken-and-egg problem

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

A chicken-and-egg problem

e The only way to create an image is by
"freezing" a container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

A chicken-and-egg problem

e The only way to create an image is by
"freezing" a container.

e The only way to create a container is by
instantiating an image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

A chicken-and-egg problem

e The only way to create an image is by
"freezing" a container.

e The only way to create a container is by
instantiating an image.

e Help!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Creating the first images

There is a special empty image called scratch.

The docker import command loads a tarball into Docker.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

32

http://rictomm.me

Creating the first images

There is a special empty image called scratch.
e |t allows to build from scratch.

The docker import command loads a tarball into Docker.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

32

http://rictomm.me

Creating the first images

There is a special empty image called scratch.
e |t allows to build from scratch.

The docker import command loads a tarball into Docker.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

32

http://rictomm.me

Creating the first images

There is a special empty image called scratch.
e |t allows to build from scratch.
The docker import command loads a tarball into Docker.

e The imported tarball becomes a standalone image.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

32

http://rictomm.me

Creating the first images

There is a special empty image called scratch.

e |t allows to build from scratch.

The docker import command loads a tarball into Docker.
e The imported tarball becomes a standalone image.

e That new image has a single layer.

Note: you will probably never have to do this yourself.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

32

http://rictomm.me

Creating other images

docker commit

docker build (used 99% of the time)

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

33

http://rictomm.me

Creating other images

docker commit

e Saves all the changes made to a container into a new layer.

docker build (used 99% of the time)

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

33

http://rictomm.me

Creating other images

docker commit

e Saves all the changes made to a container into a new layer.

* Creates a new image (effectively a copy of the container).

docker build (used 99% of the time)

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

33

http://rictomm.me

Creating other images

docker commit

e Saves all the changes made to a container into a new layer.

* Creates a new image (effectively a copy of the container).

docker build (used 99% of the time)

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

33

http://rictomm.me

Creating other images

docker commit

e Saves all the changes made to a container into a new layer.

* Creates a new image (effectively a copy of the container).
docker build (used 99% of the time)

e Performs a repeatable build sequence.

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

33

http://rictomm.me

Creating other images

docker commit

e Saves all the changes made to a container into a new layer.

* Creates a new image (effectively a copy of the container).
docker build (used 99% of the time)

e Performs a repeatable build sequence.

e This is the preferred method!

We will explain both methods in a moment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

33

http://rictomm.me

Images namespaces

There are three namespaces:

Let's explain each of them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

34

http://rictomm.me

Images namespaces

There are three namespaces:

e Official images

e.g. ubuntu, busybox ...

Let's explain each of them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

34

http://rictomm.me

Images namespaces

There are three namespaces:

e Official images
e.g. ubuntu, busybox ...
e User (and organizations) images

e.g. jpetazzo/clock

Let's explain each of them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

34

http://rictomm.me

Images namespaces

There are three namespaces:

e Official images
e.g. ubuntu, busybox ...

e User (and organizations) images
e.g. jpetazzo/clock

e Self-hosted images

e.g. registry.example.com:5000/my-private/image

Let's explain each of them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

34

http://rictomm.me

Root namespace

The root namespace is for official images.
They are gated by Docker Inc.
They are generally authored and maintained by third parties.

Those images include:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

35

http://rictomm.me

Root namespace

The root namespace is for official images.

They are gated by Docker Inc.

They are generally authored and maintained by third parties.
Those images include:

e Small, "swiss-army-knife" images like busybox.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

35

http://rictomm.me

Root namespace

The root namespace is for official images.
They are gated by Docker Inc.

They are generally authored and maintained by third parties.

Those images include:

e Small, "swiss-army-knife" images like busybox.

e Distro images to be used as bases for your builds, like ubuntu, fedora...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

35

http://rictomm.me

Root namespace

The root namespace is for official images.
They are gated by Docker Inc.

They are generally authored and maintained by third parties.

Those images include:

e Small, "swiss-army-knife" images like busybox.
e Distro images to be used as bases for your builds, like ubuntu, fedora...

e Ready-to-use components and services, like redis, postgresql...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

35

http://rictomm.me

Root namespace

The root namespace is for official images.
They are gated by Docker Inc.

They are generally authored and maintained by third parties.

Those images include:

e Small, "swiss-army-knife" images like busybox.
e Distro images to be used as bases for your builds, like ubuntu, fedora...

e Ready-to-use components and services, like redis, postgresql...

e Over 150 at this point!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 35

http://rictomm.me

User namespace

The user namespace holds images for Docker Hub users and organizations.

For example:
jpetazzo/clock

The Docker Hub user is:
jpetazzo

The image name is:

clock

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

36

http://rictomm.me

Showing current images

Let's look at what images are on our host now.

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
fedora lLatest ddd5c9c1dof2 3 days ago 204.7 MB
centos lLatest dPe/f81lcab5c 3 days ago 196.6 MB
ubuntu lLatest 0/c8616/cdc4 4 days ago 188 MB
redis lLatest 4£5£39/7/d4b/c 5 days ago 177.6 MB
postgres latest afe2b5el859b 5 days ago 264.5 MB
alpine latest /0c557e50ed6 5 days ago 4.798 MB
debian lLatest £f50£9524513f 6 days ago 125.1 MB
busybox lLatest 3240943c9eas 2 weeks ago 1.114 MB
training/namer lLatest 902673acc/41 9 months ago 289.3 MB

jpetazzo/clock lLatest 12068b93616f 12 months ago 2.433 MB

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Downloading images

There are two ways to download images.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

38

http://rictomm.me

Downloading images

There are two ways to download images.

e Explicitly, with docker pull.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

38

http://rictomm.me

Downloading images

There are two ways to download images.
e Explicitly, with docker pull.

e |Implicitly, when executing docker run and the image is not
found locally.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

38

http://rictomm.me

Pulling an image

$ docker pull debian:jessie

Pulling repository debian

b164861940b8:. Download complete

b1l64861940b8: Pulling image (jessie) from debian
d1881793a057: Download complete

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 39

http://rictomm.me

Pulling an image

$ docker pull debian:jessie
Pulling repository debian
b164861940b8:. Download complete

b1l64861940b8: Pulling image (jessie) from debian
d1881793a057: Download complete

e As seen previously, images are made up of layers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

39

http://rictomm.me

Pulling an image

$ docker pull debian:jessie
Pulling repository debian
b164861940b8:. Download complete

b1l64861940b8: Pulling image (jessie) from debian
d1881793a057: Download complete

e As seen previously, images are made up of layers.

e Docker has downloaded all the necessary layers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

39

http://rictomm.me

Pulling an image

$ docker pull debian:jessie
Pulling repository debian
b164861940b8:. Download complete

b1l64861940b8: Pulling image (jessie) from debian
d1881793a057: Download complete

e As seen previously, images are made up of layers.

e Docker has downloaded all the necessary layers.

e In this example, : jessie indicates which exact version of Debian
we would like.

It is a version tag.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

39

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Image and tags

40

http://rictomm.me

 |mages can have tags.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Image and tags

40

http://rictomm.me

Image and tags

 |mages can have tags.

e Tags define image versions or variants.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

40

http://rictomm.me

Image and tags

 |mages can have tags.
e Tags define image versions or variants.

e docker pull ubuntu will refer to ubuntu: latest.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

40

http://rictomm.me

Image and tags

 |mages can have tags.
e Tags define image versions or variants.
e docker pull ubuntu will refer to ubuntu: latest.

e The :latest tagis generally updated often.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 40

http://rictomm.me

When to (not) use tags

Don't specify tags: Do specify tags:

This is similar to what we would do with
pip install,npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags: Do specify tags:

e When doing rapid testing and
prototyping.

This is similar to what we would do with
pip install,npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags: Do specify tags:

e When doing rapid testing and
prototyping.

e When experimenting.

This is similar to what we would do with
pip install,npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags: Do specify tags:

e When doing rapid testing and
prototyping.

e When experimenting.

e When you want the latest version.

This is similar to what we would do with
pip install,npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags: Do specify tags:

e When doing rapid testing and
prototyping.

e When experimenting.

e When you want the latest version.

This is similar to what we would do with
pip install,npm install, etc.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 41

http://rictomm.me

When to (not) use tags

Don't specify tags:

e When doing rapid testing and
prototyping.

e When experimenting.

e When you want the latest version.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Do specify tags:

e When recording a procedure into a
script.

This is similar to what we would do with
pip install,npm install, etc.

41

http://rictomm.me

When to (not) use tags

Don't specify tags:

e When doing rapid testing and
prototyping.

e When experimenting.

e When you want the latest version.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Do specify tags:

e When recording a procedure into a
script.

e When going to production.

This is similar to what we would do with
pip install,npm install, etc.

41

http://rictomm.me

When to (not) use tags

Don't specify tags:

e When doing rapid testing and
prototyping.

e When experimenting.

e When you want the latest version.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Do specify tags:

e When recording a procedure into a
script.

e When going to production.

e To ensure that the same version will
be used everywhere.

This is similar to what we would do with
pip install,npm install, etc.

41

http://rictomm.me

When to (not) use tags

Don't specify tags:

e When doing rapid testing and
prototyping.

e When experimenting.

e When you want the latest version.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Do specify tags:

e When recording a procedure into a
script.

e When going to production.

e To ensure that the same version will
be used everywhere.

e To ensure repeatability later.

This is similar to what we would do with
pip install,npm install, etc.

41

http://rictomm.me

Section summary

We've learned how to:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

42

http://rictomm.me

Section summary

We've learned how to:

e Understand images and layers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

42

http://rictomm.me

Section summary

We've learned how to:
e Understand images and layers.

 Understand Docker image namespacing.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

42

http://rictomm.me

Section summary

We've learned how to:
e Understand images and layers.
 Understand Docker image namespacing.

e Search and download images.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

42

http://rictomm.me

Building Docker images with a
Dockerfile

http://rictomm.me

Objectives

We will build a container image automatically, with a Dockerfile.

At the end of this lesson, you will be able to:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 44

http://rictomm.me

Objectives

We will build a container image automatically, with a Dockerfile.
At the end of this lesson, you will be able to:

e Write a Dockerfile.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 44

http://rictomm.me

Objectives

We will build a container image automatically, with a Dockerfile.
At the end of this lesson, you will be able to:

e Write a Dockerfile.

e Build an image from a Dockerfile.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 44

http://rictomm.me

Dockerfile overview

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

45

http://rictomm.me

Dockerfile overview

e ADockerfile is a build recipe for a Docker image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

45

http://rictomm.me

Dockerfile overview

e ADockerfile is a build recipe for a Docker image.

e |t contains a series of instructions telling Docker how an image is
constructed.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 45

http://rictomm.me

Dockerfile overview

e ADockerfile is a build recipe for a Docker image.

e |t contains a series of instructions telling Docker how an image is
constructed.

e The docker build command builds an image from a
Dockerfile.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 45

http://rictomm.me

Writing our first Dockerfile

Our Dockerfile must be in a new, empty directory.

$ mkdir myimage

$ cd myimage
$ vim Dockerfile

Of course, you can use any other editor of your choice.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

46

http://rictomm.me

Writing our first Dockerfile

Our Dockerfile must be in a new, empty directory.

1. Create a directory to hold our Dockerfile.

$ mkdir myimage

$ cd myimage
$ vim Dockerfile

Of course, you can use any other editor of your choice.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

46

http://rictomm.me

Writing our first Dockerfile

Our Dockerfile must be in a new, empty directory.

1. Create a directory to hold our Dockerfile.

$ mkdir myimage

$ cd myimage
$ vim Dockerfile

Of course, you can use any other editor of your choice.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

46

http://rictomm.me

Writing our first Dockerfile

Our Dockerfile must be in a new, empty directory.
1. Create a directory to hold our Dockerfile.

$ mkdir myimage

1. Create a Dockerfile inside this directory.

$ cd myimage
$ vim Dockerfile

Of course, you can use any other editor of your choice.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

46

http://rictomm.me

Type this into our Dockerfile...

-ROM ubuntu
RUN apt-get update
RUN apt-get install figlet

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

47

http://rictomm.me

Type this into our Dockerfile...

-ROM ubuntu
RUN apt-get update
RUN apt-get install figlet

e FROM indicates the base image for our build.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

47

http://rictomm.me

Type this into our Dockerfile...

-ROM ubuntu
RUN apt-get update
RUN apt-get install figlet

e FROM indicates the base image for our build.

 Each RUN line will be executed by Docker during the build.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

47

http://rictomm.me

Type this into our Dockerfile...

-ROM ubuntu
RUN apt-get update
RUN apt-get install figlet

e FROM indicates the base image for our build.
 Each RUN line will be executed by Docker during the build.

e Our RUN commands must be non-interactive.

(No input can be provided to Docker during the build.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

47

http://rictomm.me

Type this into our Dockerfile...

-ROM ubuntu
RUN apt-get update
RUN apt-get install figlet

e FROM indicates the base image for our build.

 Each RUN line will be executed by Docker during the build.

e Our RUN commands must be non-interactive.

(No input can be provided to Docker during the build.)

* In many cases, we will add the -y flag to apt -get.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

47

http://rictomm.me

Build it!

Save our file, then execute:

$ docker build -t figlet .

We will talk more about the build context later.

To keep things simple for now: this is the directory where our Dockerfile
Is located.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 48

http://rictomm.me

Build it!

Save our file, then execute:

$ docker build -t figlet .

e -t indicates the tag to apply to the image.

We will talk more about the build context later.

To keep things simple for now: this is the directory where our Dockerfile
Is located.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 48

http://rictomm.me

Build it!

Save our file, then execute:

$ docker build -t figlet .

e -t indicates the tag to apply to the image.

e . indicates the location of the build context.
We will talk more about the build context later.

To keep things simple for now: this is the directory where our Dockerfile
Is located.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 48

http://rictomm.me

What happens when we build the image?

The output of docker build
looks like this:

docker build -t figlet .
Sending build context to Docker daemon 2.048kB
Step 1/3 : FROM ubuntu
---> £975c5035748
Step 2/3 : RUN apt-get update
---> Running in e@1b294dbffd
(...output of the RUN command...)
Removing intermediate container e@1b294dbffd
---> eb8d9b561b37
Step 3/3 : RUN apt-get install figlet
---> Running in ¢29230d/0£f9b
(...output of the RUN command...)
Removing intermediate container ¢29230d/0f9b
---> 0dfd7a253f21
Successfully built 0@dfd7a253f21
Successfully tagged figlet:latest

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

49

http://rictomm.me

What happens when we build the image?

The output of docker build
looks like this:

docker build -t figlet .
Sending build context to Docker daemon 2.048kB
Step 1/3 : FROM ubuntu
---> £975c5035748
Step 2/3 : RUN apt-get update
---> Running in e@1b294dbffd
(...output of the RUN command...)
Removing intermediate container e@1b294dbffd
---> eb8d9b561b37
Step 3/3 : RUN apt-get install figlet
---> Running in ¢29230d/0£f9b
(...output of the RUN command...)
Removing intermediate container ¢29230d/0f9b
---> 0dfd7a253f21
Successfully built 0@dfd7a253f21
Successfully tagged figlet:latest

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

e The output of the RUN
commands has been omitted.

49

http://rictomm.me

What happens when we build the image?

The output of docker build e The output of the RUN

looks like this: commands has been omitted.
docker build -t figlet . e Let's explain what this output
Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM ubuntu means.

---> £975c5035748

Step 2/3 : RUN apt-get update
---> Running in e@1b294dbffd

(...output of the RUN command...)

Removing intermediate container e@1b294dbffd
---> eb8d9b561b37

Step 3/3 : RUN apt-get install figlet
---> Running in ¢29230d/0£f9b

(...output of the RUN command...)

Removing intermediate container ¢29230d/0f9b
---> 0dfd7a253f21

Successfully built 0@dfd7a253f21

Successfully tagged figlet:latest

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 49

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

 The build context is the . directory given to docker build.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

 The build context is the . directory given to docker build.

e |tis sent (as an archive) by the Docker client to the Docker daemon.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

 The build context is the . directory given to docker build.

e |tis sent (as an archive) by the Docker client to the Docker daemon.

e This allows to use a remote machine to build using local files.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

 The build context is the . directory given to docker build.
e |tis sent (as an archive) by the Docker client to the Docker daemon.
e This allows to use a remote machine to build using local files.

e Be careful (or patient) if that directory is big and your link is slow.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

50

http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

 The build context is the . directory given to docker build.

e |tis sent (as an archive) by the Docker client to the Docker daemon.
e This allows to use a remote machine to build using local files.

e Be careful (or patient) if that directory is big and your link is slow.

e You can speed up the process with a . dockerignore file

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

50

https://docs.docker.com/engine/reference/builder/%5B%5Bdockerignore-file%5D%5D
http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

 The build context is the . directory given to docker build.

e |tis sent (as an archive) by the Docker client to the Docker daemon.
e This allows to use a remote machine to build using local files.

e Be careful (or patient) if that directory is big and your link is slow.

e You can speed up the process with a . dockerignore file

e |t tells docker to ignore specific files in the directory

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

50

https://docs.docker.com/engine/reference/builder/%5B%5Bdockerignore-file%5D%5D
http://rictomm.me

Sending the build context to Docker

Sending build context to Docker daemon 2.048 kB

 The build context is the . directory given to docker build.
e |tis sent (as an archive) by the Docker client to the Docker daemon.
e This allows to use a remote machine to build using local files.
e Be careful (or patient) if that directory is big and your link is slow.
e You can speed up the process with a . dockerignore file
e |t tells docker to ignore specific files in the directory

e Only ignore files that you won't need in the build context!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

50

https://docs.docker.com/engine/reference/builder/%5B%5Bdockerignore-file%5D%5D
http://rictomm.me

Executing each step

Step 2/3 : RUN apt-get update
---> Running in e01b294dbffd
(...output of the RUN command...)
Removing intermediate container e01b294dbffd

---> eb8d9b561b37/

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

51

http://rictomm.me

Executing each step

Step 2/3 : RUN apt-get update
---> Running in e01b294dbffd

(...output of the RUN command...)

Removing intermediate container e01b294dbffd
---> eb8d9b561b37/

e A container (e01b294dbffd) is created from the base image.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

51

http://rictomm.me

Executing each step

Step 2/3 : RUN apt-get update
---> Running in e01b294dbffd
(...output of the RUN command...)

Removing intermediate container e01b294dbffd
---> eb8d9b561b37/

e A container (e01b294dbffd) is created from the base image.

e The RUN command is executed in this container.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

51

http://rictomm.me

Executing each step

Step 2/3 : RUN apt-get update
---> Running in e01b294dbffd
(...output of the RUN command...)

Removing intermediate container e01b294dbffd
---> eb8d9b561b37/

e A container (e01b294dbffd) is created from the base image.
e The RUN command is executed in this container.

 The container is committed into an image (eb8d9b561b37).

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

51

http://rictomm.me

Executing each step

Step 2/3 : RUN apt-get update
---> Running in e01b294dbffd
(...output of the RUN command...)

Removing intermediate container e01b294dbffd
---> eb8d9b561b37/

e A container (e01b294dbffd) is created from the base image.
e The RUN command is executed in this container.
 The container is committed into an image (eb8d9b561b37).

e The build container (e01b294dbffd) is removed.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

51

http://rictomm.me

Executing each step

Step 2/3 : RUN apt-get update
---> Running in e01b294dbffd
(...output of the RUN command...)

Removing intermediate container e01b294dbffd
---> eb8d9b561b37/

e A container (e01b294dbffd) is created from the base image.
e The RUN command is executed in this container.

 The container is committed into an image (eb8d9b561b37).

e The build container (e01b294dbffd) is removed.

e The output of this step will be the base image for the next one.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 51

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

e After each build step, Docker takes a snapshot of the resulting image.

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

e After each build step, Docker takes a snapshot of the resulting image.

e Before executing a step, Docker checks if it has already built the same sequence.

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

e After each build step, Docker takes a snapshot of the resulting image.
e Before executing a step, Docker checks if it has already built the same sequence.

e Docker uses the exact strings defined in your Dockerfile, so:

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

e After each build step, Docker takes a snapshot of the resulting image.
e Before executing a step, Docker checks if it has already built the same sequence.
e Docker uses the exact strings defined in your Dockerfile, so:

e RUN apt-get install figlet cowsay

is different from

RUN apt-get install cowsay figlet

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

52

http://rictomm.me

The caching system

If you run the same build again, it will be instantaneous. Why?

e After each build step, Docker takes a snapshot of the resulting image.

e Before executing a step, Docker checks if it has already built the same sequence.
e Docker uses the exact strings defined in your Dockerfile, so:

e RUN apt-get install figlet cowsay

is different from

RUN apt-get install cowsay figlet

e RUN apt-get update is not re-executed when the mirrors are updated

You can force a rebuild with docker build --no-cache

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

52

http://rictomm.me

Running the image

The resulting image is not different from the one produced manually.

$ docker run -ti figlet
root@91£3c9/4c9al:/# figlet hello

1
I I

1
N N

)

|

Yay! .emoji[£5]

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

53

http://rictomm.me

The Container Network Model

http://rictomm.me

Objectives

We will learn about the CNM (Container Network Model).

At the end of this lesson, you will be able to:

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

55

http://rictomm.me

Objectives

We will learn about the CNM (Container Network Model).
At the end of this lesson, you will be able to:

e Create a private network for a group of containers.

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

55

http://rictomm.me

Objectives

We will learn about the CNM (Container Network Model).
At the end of this lesson, you will be able to:

e Create a private network for a group of containers.

e Use container naming to connect services together.

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

55

http://rictomm.me

Objectives

We will learn about the CNM (Container Network Model).
At the end of this lesson, you will be able to:

e Create a private network for a group of containers.
e Use container naming to connect services together.

 Dynamically connect and disconnect containers to networks.

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

55

http://rictomm.me

Objectives

We will learn about the CNM (Container Network Model).
At the end of this lesson, you will be able to:

e Create a private network for a group of containers.
e Use container naming to connect services together.
e Dynamically connect and disconnect containers to networks.

e Set the IP address of a container.

We will also explain the principle of overlay networks and network plugins.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 55

http://rictomm.me

The Container Network Model

Docker has "networks".

We can manage them with the docker network commands; for instance:

$ docker network ls

NETWORK ID NAME DRIVER
6bde/9dfcf/0 bridge bridge
8d9c/78725538 none null
ebleeab/782f4 host host
4c1f£84d6d3f blog-dev overlay
228a4355d548 blog-prod overlay

New networks can be created (with docker network create).

(Note: networks none and host are special; let's set them aside for now.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

56

http://rictomm.me

What's a network?

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

57

http://rictomm.me

What's a network?

e Conceptually, a Docker "network" is a virtual switch

(we can also think about it like a VLAN, or a WiFi SSID, for instance)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

57

http://rictomm.me

What's a network?

e Conceptually, a Docker "network" is a virtual switch
(we can also think about it like a VLAN, or a WiFi SSID, for instance)
e By default, containers are connected to a single network

(but they can be connected to zero, or many networks, even dynamically)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

57

http://rictomm.me

What's a network?

e Conceptually, a Docker "network" is a virtual switch
(we can also think about it like a VLAN, or a WiFi SSID, for instance)
e By default, containers are connected to a single network

(but they can be connected to zero, or many networks, even dynamically)

e Each network has its own subnet (IP address range)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

57

http://rictomm.me

What's a network?

e Conceptually, a Docker "network" is a virtual switch

(we can also think about it like a VLAN, or a WiFi SSID, for instance)
e By default, containers are connected to a single network

(but they can be connected to zero, or many networks, even dynamically)
e Each network has its own subnet (IP address range)

A network can be local (to a single Docker Engine) or global (span multiple hosts)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 57

http://rictomm.me

What's a network?

e Conceptually, a Docker "network" is a virtual switch
(we can also think about it like a VLAN, or a WiFi SSID, for instance)
e By default, containers are connected to a single network
(but they can be connected to zero, or many networks, even dynamically)
e Each network has its own subnet (IP address range)
A network can be local (to a single Docker Engine) or global (span multiple hosts)
e Containers can have network aliases providing DNS-based service discovery

(and each network has its own "domain", "zone", or "scope")

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 57

http://rictomm.me

Service discovery

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

58

http://rictomm.me

Service discovery

e A container can be given a network alias

(e.g. with docker run --net some-network --net-alias db

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

)

58

http://rictomm.me

Service discovery

e A container can be given a network alias
(e.g. with docker run --net some-network --net-alias db
 The containers running in the same network can resolve that network alias

(i.e. if they do a DNS lookup on db, it will give the container's address)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

)

58

http://rictomm.me

Service discovery

e A container can be given a network alias
(e.g. with docker run --net some-network --net-alias db
 The containers running in the same network can resolve that network alias
(i.e. if they do a DNS lookup on db, it will give the container's address)
 We can have a different db container in each network

(this avoids naming conflicts between different stacks)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

)

58

http://rictomm.me

Service discovery

e A container can be given a network alias
(e.g. with docker run --net some-network --net-alias db ...)
 The containers running in the same network can resolve that network alias
(i.e. if they do a DNS lookup on db, it will give the container's address)
 We can have a different db container in each network
(this avoids naming conflicts between different stacks)
e When we name a container, it automatically adds the name as a network alias

(i.,e. docker run --name xyz ... islikedocker run --net-alias xyz

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 58

http://rictomm.me

Network isolation

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

59

http://rictomm.me

Network isolation

e Networks are isolated

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

59

http://rictomm.me

Network isolation

e Networks are isolated

e By default, containers in network A cannot reach those in network B

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

59

http://rictomm.me

Network isolation

e Networks are isolated
e By default, containers in network A cannot reach those in network B

e A container connected to both networks A and B can act as a router
Or proxy

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

59

http://rictomm.me

Network isolation

e Networks are isolated
e By default, containers in network A cannot reach those in network B

e A container connected to both networks A and B can act as a router
Or proxy

e Published ports are always reachable through the Docker host
address

(docker run -P ... makes a container port available to everyone)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 59

http://rictomm.me

How to use networks

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

60

http://rictomm.me

How to use networks

e We typically create one network per "stack" or app that we deploy

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 60

http://rictomm.me

How to use networks

e We typically create one network per "stack" or app that we deploy
e More complex apps or stacks might require multiple networks

(e.g. frontend, backend, ...)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 60

http://rictomm.me

How to use networks

e We typically create one network per "stack" or app that we deploy

e More complex apps or stacks might require multiple networks
(e.g. frontend, backend, ...)

e Networks allow us to deploy multiple copies of the same stack

(e.g. prod, dev, pr-442, ...

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 60

http://rictomm.me

How to use networks

e We typically create one network per "stack" or app that we deploy

e More complex apps or stacks might require multiple networks
(e.g. frontend, backend, ...)

e Networks allow us to deploy multiple copies of the same stack
(e.g. prod, dev, pr-442, ...

e |f we use Docker Compose, this is managed automatically for us

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 60

http://rictomm.me

Single container in a Docker network

192.168.1.2

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

61

http://rictomm.me

Two containers on a single Docker network

eth0: 172.18.0.3

database app

eth0: 172.18.0.4

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

192.168.1.2

62

http://rictomm.me

Two containers on two Docker networks

Container 1 Container 2
Web app Web app 2
eth0: 172.18.0.3 eth0: 172.19.0.3

4

4

my_docker my_docker2
virtual network virtual network

host eth0:
192.168.1.2

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Creating a network

Let's create a network called dev.

$ docker network create dev
4c1f£f84d6d3f1/33d3e233ee@39cac2/6£425a9d5228a43555d54878293a889ba

The network is now visible with the network 1ls command:

$ docker network ls

NETWORK ID NAME DRIVER
6bde/9dfcft/0 bridge bridge
3d9c/8725538 none null
ebleeab/82f4 host host

4cl1lff84d6dst dev bridge

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Placing containers on a network

We will create a named container on this network.

It will be reachable with its name, es.

$ docker run -d --name es --net dev elasticsearch:?2
8abb80e229¢ce8926c/223bebb69699f5f34d6£1d438bfc5682db893e/9804686353

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 65

http://rictomm.me

Communication between containers

Now, create another container on this network.

_ . . / # ping es
$ docker run -ti net dev alpine sh PING es (172.18.0.2) 56(84) bytes of data.
I‘OOt@@GCCCdfa45ef . /# 64 bytes from es.dev (172.18.0.2): icmp_seq=1 ttl=64 time=0.221 ms

64 bytes from es.dev (172.18.0.2): icmp_seqg=2 ttl=64 time=0.114 ms
64 bytes from es.dev (172.18.0.2): icmp_seq=3 ttl=64 time=0.114 ms
~C

[] []
--- es ping statistics ---
From thIS neW Contalner’ We 3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.114/0.149/0.221/0.052 ms

Can reSO|Ve and ping the Other root@decccdfa45ef: /#
one, using its assigned name:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 66

http://rictomm.me

Resolving container addresses

Since Docker Engine 1.10, name resolution [rootedeccedfadbel /11 cat /ere/nosts

Is implemented by a dynamic resolver. 127.0.0.1 Localhost |
| Localhost ipé6-localhost ip6-loopback
fe00::0 ipb6-localnet

. ff00::0 ip6-mcastprefix

Archeological note: when CNM was ££02::1 ip6-allnodes

. . . £f£f02::2 ip6-all t

intoduced (in Docker Engine 1.9, s e

November 2015) 172.18.0.2 es.dev

name resolution was implemented with /
etc/hosts, and it was updated each time
CONTAINERs were added/removed. This
could cause interesting race conditions
since /etc/hosts was a bind-mount (and
couldn't be updated atomically).

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Service discovery with containers

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

68

http://rictomm.me

Service discovery with containers

e |et's try to run an application that requires two containers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

68

http://rictomm.me

Service discovery with containers

e |et's try to run an application that requires two containers.

e The first container is a web server.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

68

http://rictomm.me

Service discovery with containers

e |et's try to run an application that requires two containers.
e The first container is a web server.

e The other one is a redis data store.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

68

http://rictomm.me

Service discovery with containers

e |et's try to run an application that requires two containers.
e The first container is a web server.
e The other one is a redis data store.

e We will place them both on the dev network created before.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

68

http://rictomm.me

Running the web server

Start the container, exposing all its ports:

$ docker run --net dev -d -P jpetazzo/trainingwheels
Check the port that has been allocated to it:

$ docker ps -1

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

69

http://rictomm.me

Running the web server

e The application is provided by the container image jpetazzo/
trainingwheels.

Start the container, exposing all its ports:

$ docker run --net dev -d -P jpetazzo/trainingwheels

Check the port that has been allocated to it:
$ docker ps -1

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

69

http://rictomm.me

Running the web server

e The application is provided by the container image jpetazzo/
trainingwheels.

e We don't know much about it so we will try to run it and see what happens!

Start the container, exposing all its ports:
$ docker run --net dev -d -P jpetazzo/trainingwheels
Check the port that has been allocated to it:

$ docker ps -1

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 69

http://rictomm.me

Test the web server

Error -2 connecting to redis:6379. Name or service not known.

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 70

http://rictomm.me

Test the web server

e |f we connect to the application now,
we will see an error page:

Error -2 connecting to redis:6379. Name or service not known.

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 70

http://rictomm.me

Test the web server

e |f we connect to the application now,
we will see an error page:

Error -2 connecting to redis:6379. Name or service not known.

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 70

http://rictomm.me

Test the web server

If we connect to the application now,
we will see an error page:

 This is because the Redis service is not
running.

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Error -2 connecting to redis:6379. Name or service not known.

70

http://rictomm.me

Test the web server

e |f we connect to the application now,
we will see an error page:

 This is because the Redis service is not
running.

e This container tries to resolve the name

I\edi S Error -2 connecting to redis:6379. Name or service not known.
[]

Note: we're not using a FQDN or an IP
address here; just redis.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 70

http://rictomm.me

Start the data store

Start the container:

$ docker run --net dev --net-alias redis -d redis

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

71

http://rictomm.me

Start the data store

e We need to start a Redis container.

Start the container:

$ docker run --net dev --net-alias redis -d redis

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

71

http://rictomm.me

Start the data store

e We need to start a Redis container.

e That container must be on the same network as the web server.

Start the container:

$ docker run --net dev --net-alias redis -d redis

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

71

http://rictomm.me

Start the data store

e We need to start a Redis container.

e That container must be on the same network as the web server.

e |t must have the right network alias (redis) so the application
can find it.

Start the container:

$ docker run --net dev --net-alias redis -d redis

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

71

http://rictomm.me

Training wheels

This request was served by f927b966d8e5.

f927b966d8e5 served 1 request so far.

The current ladder is:

o f927b966d8e5 = 1 request

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Test the web server again

72

http://rictomm.me

Training wheels

This request was served by f927b966d8e5.

f927b966d8e5 served 1 request so far.

The current ladder is:

o f927b966d8e5 = 1 request

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Test the web server again

e |f we connect to the application now,
we should see that the app is working
correctly:

72

http://rictomm.me

Training wheels

This request was served by f927b966d8e5.

f927b966d8e5 served 1 request so far.

The current ladder is:

o f927b966d8e5 = 1 request

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

Test the web server again

e |f we connect to the application now,
we should see that the app is working
correctly:

72

http://rictomm.me

Test the web server again

e |f we connect to the application now,
we should see that the app is working
correctly:

Training wheels

This request was served by f927b966d8e5.

e When the app tries to resolve redis,

f927b966d8e5 served 1 request so far. instead of getting a DNS error, it gets
The current ladder is: the IP addFESS Of OUI‘ RediS Container.

o f927b966d8e5 = 1 request

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

72

http://rictomm.me

A few words on scope

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

73

http://rictomm.me

A few words on scope

e Container names are unique (there can be only one --name redis)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

73

http://rictomm.me

A few words on scope

e Container names are unique (there can be only one --name redis)

e Network aliases are not unique

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

73

http://rictomm.me

A few words on scope

e Container names are unique (there can be only one --name redis)
e Network aliases are not unique

e We can have the same network alias in different networks:
bash

docker run --net dev --net-alias redis
docker run --net prod --net-alias redis

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 73

http://rictomm.me

A few words on scope

e Container names are unique (there can be only one --name redis)
e Network aliases are not unique

e We can have the same network alias in different networks:
bash
docker run --net dev --net-allias redis
docker run --net prod --net-alias redis

e We can even have multiple containers with the same alias in the same network

(in that case, we get multiple DNS entries, aka "DNS round robin")

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 73

http://rictomm.me

Names are local to each network

Let's try to ping our es container from another container, when that
other container is not on the dev network.

$ docker run --rm alpine ping es
ping: bad address 'es'

Names can be resolved only when containers are on the same
network.

Containers can contact each other only when they are on the same
network (you can try to ping using the IP address to verify).

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

74

http://rictomm.me

Docker Compose

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

75

http://rictomm.me

Compose for development stacks

Dockerfiles are great to build container images.
But what if we work with a complex stack made of multiple containers?

Eventually, we will want to write some custom scripts and automation to

build, run, and connect
our containers together.

There is a better way: using Docker Compose.

In this section, you will use Compose to bootstrap a development
environment.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

76

http://rictomm.me

What is Docker Compose?

Docker Compose (formerly known as £ig) is an external tool.
Unlike the Docker Engine, it is written in Python. It's open source as well.

The general idea of Compose is to enable a very simple, powerful
onboarding workflow:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

77

http://rictomm.me

What is Docker Compose?

Docker Compose (formerly known as £ig) is an external tool.

Unlike the Docker Engine, it is written in Python. It's open source as well.

The general idea of Compose is to enable a very simple, powerful
onboarding workflow:

1. Checkout your code.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 77

http://rictomm.me

What is Docker Compose?

Docker Compose (formerly known as £ig) is an external tool.

Unlike the Docker Engine, it is written in Python. It's open source as well.

The general idea of Compose is to enable a very simple, powerful
onboarding workflow:

1. Checkout your code.

2. Run docker-compose up.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 77

http://rictomm.me

What is Docker Compose?

Docker Compose (formerly known as £ig) is an external tool.
Unlike the Docker Engine, it is written in Python. It's open source as well.

The general idea of Compose is to enable a very simple, powerful
onboarding workflow:

1. Checkout your code.
2. Run docker-compose up.

3. Your app is up and running!

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

77

http://rictomm.me

Compose overview

This is how you work with Compose:

Before diving in, let's see a small example of Compose in action.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

78

http://rictomm.me

Compose overview

This is how you work with Compose:

* You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

Before diving in, let's see a small example of Compose in action.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

78

http://rictomm.me

Compose overview

This is how you work with Compose:

* You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

e You run docker-compose up.

Before diving in, let's see a small example of Compose in action.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

78

http://rictomm.me

Compose overview

This is how you work with Compose:

* You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

e You run docker-compose up.

e Compose automatically pulls images, builds containers, and starts them.

Before diving in, let's see a small example of Compose in action.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

78

http://rictomm.me

Compose overview

This is how you work with Compose:

* You describe a set (or stack) of containers in a YAML file called docker-compose.yml.

e You run docker-compose up.

e Compose automatically pulls images, builds containers, and starts them.

e Compose can set up links, volumes, and other Docker options for you.

Before diving in, let's see a small example of Compose in action.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Compose overview

This is how you work with Compose:

* You describe a set (or stack) of containers in a YAML file called docker-compose.yml.
e You run docker-compose up.

e Compose automatically pulls images, builds containers, and starts them.

e Compose can set up links, volumes, and other Docker options for you.

e Compose can run the containers in the background, or in the foreground.

Before diving in, let's see a small example of Compose in action.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Compose overview

This is how you work with Compose:

* You describe a set (or stack) of containers in a YAML file called docker-compose.yml.
e You run docker-compose up.

e Compose automatically pulls images, builds containers, and starts them.

e Compose can set up links, volumes, and other Docker options for you.

e Compose can run the containers in the background, or in the foreground.

e When containers are running in the foreground, their aggregated output is shown.

Before diving in, let's see a small example of Compose in action.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 78

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Checking if Compose is installed

If you are using the official training virtual machines, Compose has been
pre-installed.

If you are using Docker for Mac/Windows or the Docker Toolbox, Compose
comes with them.

If you are on Linux (desktop or server environment), you will need to install
Compose from its release page or with pip install docker-compose.

You can always check that it is installed by running:

$ docker-compose --version

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 80

https://github.com/docker/compose/releases
http://rictomm.me

Launching Our First Stack with Compose

First step: clone the source code for the app we will be working on.

$ cd
$ git clone --branch docker https://github.com/DataSystemsGroupUT/dataeng.git

$ cd dataeng

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 81

http://rictomm.me

Launching Our First Stack with Compose

Second step: start your app.

$ docker-compose up

Watch Compose build and run your app with the correct
parameters,

including linking the relevant containers together.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

82

http://rictomm.me

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

http://rictomm.me

Launching Our First Stack with Compose

In a new terminal

$ docker ps

CONTAINER ID IMAGE COMMAND
60d8f5b92115 dataeng_words "/bin/sh -c 'exec ja."
d95¢c558b5413 jupyter/datascience-notebook "tini -g -- start-no.."

2946248e06e2 dataeng_web "./dispatcher”
dataeng_db "docker-entrypoint.s.."
: ~/_Projects/dataeng (docker) $

CREATED

3 seconds ago
3 seconds ago
3 seconds ago
3 seconds ago

STATUS

Up 3 seconds
Up 3 seconds
Up 3 seconds
Up 3 seconds

PORTS
0.0.0.0:32783->8080/tcp
0.0.0.0:8888->8888/tcp
0.0.0.0:32784->80/tcp
5432/tcp

NAMES
dataeng_words_1
dataeng_notebook_1
dataeng_web_1
dataeng_db_1

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

84

http://rictomm.me

Stopping the app

When you hit AC, Compose tries to gracefully terminate all of the
containers.

After ten seconds (or if you press ~C again) it will forcibly kill
them.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

85

http://rictomm.me

The docker-compose.yml file

Here is the file used in the demo:

version: "3"

services:

web:
build: web
ports:
- 80

db:
build: db

words:
build: words
ports:
- 8080

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

86

http://rictomm.me

Compose file structure

A Compose file has multiple sections:

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

87

http://rictomm.me

Compose file structure

A Compose file has multiple sections:

e version is mandatory. (We should use "2" or later; version 1 is deprecated.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

87

http://rictomm.me

Compose file structure

A Compose file has multiple sections:

e version is mandatory. (We should use "2" or later; version 1 is deprecated.)

e services is mandatory. A service is one or more replicas of the same image running as
containers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 87

http://rictomm.me

Compose file structure

A Compose file has multiple sections:

e version is mandatory. (We should use "2" or later; version 1 is deprecated.)

e services is mandatory. A service is one or more replicas of the same image running as
containers.

e networks is optional and indicates to which networks containers should be connected.

(By default, containers will be connected on a private, per-compose-file network.)

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 87

http://rictomm.me

Compose file structure

A Compose file has multiple sections:

e version is mandatory. (We should use "2" or later; version 1 is deprecated.)

e services is mandatory. A service is one or more replicas of the same image running as
containers.

e networks is optional and indicates to which networks containers should be connected.

(By default, containers will be connected on a private, per-compose-file network.)

e volumes is optional and can define volumes to be used and/or shared by the
containers.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 87

http://rictomm.me

Compose file versions

The Docker documentation

has excellent information about the Compose file format if you need to know
more about versions.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

88

https://docs.docker.com/compose/compose-file/
http://rictomm.me

Compose file versions

e Version 1 is legacy and shouldn't be used.

(If you see a Compose file without version and services,it's alegacy vl
file.)

The Docker documentation

has excellent information about the Compose file format if you need to know
more about versions.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

88

https://docs.docker.com/compose/compose-file/
http://rictomm.me

Compose file versions

e Version 1 is legacy and shouldn't be used.

(If you see a Compose file without version and services,it's alegacy vl
file.)

e Version 2 added support for networks and volumes.

The Docker documentation

has excellent information about the Compose file format if you need to know
more about versions.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

88

https://docs.docker.com/compose/compose-file/
http://rictomm.me

Compose file versions

e Version 1 is legacy and shouldn't be used.

(If you see a Compose file without version and services,it's alegacy vl
file.)

e Version 2 added support for networks and volumes.

e Version 3 added support for deployment options (scaling, rolling updates, etc).

The Docker documentation
has excellent information about the Compose file format if you need to know

more about versions.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 88

https://docs.docker.com/compose/compose-file/
http://rictomm.me

Containers in docker-compose.yml

Each service in the YAML file must contain either build, or image.

The other parameters are optional.

They encode the parameters that you would typically add to docker run.

Sometimes they have several minor improvements.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

89

http://rictomm.me

Containers in docker-compose.yml

Each service in the YAML file must contain either build, or image.

e build indicates a path containing a Dockerfile.

The other parameters are optional.

They encode the parameters that you would typically add to docker run.

Sometimes they have several minor improvements.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

89

http://rictomm.me

Containers in docker-compose.yml

Each service in the YAML file must contain either build, or image.

e build indicates a path containing a Dockerfile.

 image indicates an image name (local, or on a registry).

The other parameters are optional.
They encode the parameters that you would typically add to docker run.

Sometimes they have several minor improvements.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

89

http://rictomm.me

Containers in docker-compose.yml

Each service in the YAML file must contain either build, or image.

e build indicates a path containing a Dockerfile.
 image indicates an image name (local, or on a registry).

e If both are specified, an image will be built from the build directory and named image.
The other parameters are optional.
They encode the parameters that you would typically add to docker run.

Sometimes they have several minor improvements.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 89

http://rictomm.me

Container parameters

For the full list, check: https:/docs.docker.com/compose/compose-file/

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 90

http://rictomm.me

Container parameters

e command indicates what to run (like CMD in a Dockerfile).

For the full list, check: https:/docs.docker.com/compose/compose-file/

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 90

http://rictomm.me

Container parameters

e command indicates what to run (like CMD in a Dockerfile).

e ports translates to one (or multiple) -p options to map ports.

You can specify local ports (i.e. x : y to expose public port x).

For the full list, check: https:/docs.docker.com/compose/compose-file/

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 90

http://rictomm.me

Container parameters

e command indicates what to run (like CMD in a Dockerfile).

e ports translates to one (or multiple) -p options to map ports.

You can specify local ports (i.e. x : y to expose public port x).

e volumes translates to one (or multiple) -v options.

You can use relative paths here.

For the full list, check: https:/docs.docker.com/compose/compose-file/

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 90

http://rictomm.me

Compose commands

We already saw docker-compose up, but another one is docker-
compose build.

It will execute docker build for all containers mentioning a build path.

It can also be invoked automatically when starting the application:

docker-compose up --build

Another common option is to start containers in the background:

docker-compose up -d

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 91

http://rictomm.me

Check container status

It can be tedious to check the status of your containers with docker ps,
especially when running multiple apps at the same time.

Compose makes it easier; with docker-compose ps you will see only

the status of the
containers of the current stack:

$ docker-compose ps
Name Command State Ports

trainingwheels redis 1 /entrypoint.sh red Up 6379/tcp
trainingwheels www_ 1 python counter.py Up 0.0.0.0:3000->5000/tcp

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 92

http://rictomm.me

Cleaning up (1)
If you have started your application in the background with Compose and

want to stop it easily, you can use the kill command:

$ docker-compose kill

Likewise, docker-compose rm will let you remove containers (after confirmation):

$ docker-compose rm

Going to remove trainingwheels redis 1, trainingwheels www 1
Are you sure? [yN] vy

Removing trainingwheels redis 1...

Removing trainingwheels www_ 1. ..

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 93

http://rictomm.me

Cleaning up (2)

Alternatively, docker-compose down will stop and remove containers.

It will also remove other resources, like networks that were created for the
application.

$ docker-compose down

Stopping trainingwheels www 1 ... done
Stopping trainingwheels redis 1 ... done
Removing trainingwheels www_1 ... done
Removing trainingwheels redis 1 ... done

Use docker-compose down -v toremove everything including volumes.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 94

http://rictomm.me

Special handling of volumes

Compose is smart. If your container uses volumes, when you restart

your
application, Compose will create a new container, but carefully re-

use
the volumes it was using previously.

This makes it easy to upgrade a stateful service, by pulling its
new image and just restarting your stack with Compose.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 95

http://rictomm.me

Compose project name

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm

926

http://rictomm.me

Compose project name

e When you run a Compose command, Compose infers the "project name" of your app.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

e When you run a Compose command, Compose infers the "project name" of your app.

e By default, the "project name" is the name of the current directory.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

e When you run a Compose command, Compose infers the "project name" of your app.

e By default, the "project name" is the name of the current directory.

e Forinstance, if you are in /home/zelda/src/ocarina, the project name is
ocarina.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

e When you run a Compose command, Compose infers the "project name" of your app.

e By default, the "project name" is the name of the current directory.

e Forinstance, if you are in /home/zelda/src/ocarina, the project name is
ocarina.

e All resources created by Compose are tagged with this project name.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

e When you run a Compose command, Compose infers the "project name" of your app.
e By default, the "project name" is the name of the current directory.

e Forinstance, if you are in /home/zelda/src/ocarina, the project name is
ocarina.

e All resources created by Compose are tagged with this project name.
e The project name also appears as a prefix of the names of the resources.

E.g. in the previous example, service www will create a container ocarina www_1.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

Compose project name

e When you run a Compose command, Compose infers the "project name" of your app.
e By default, the "project name" is the name of the current directory.

e Forinstance, if you are in /home/zelda/src/ocarina, the project name is
ocarina.

e All resources created by Compose are tagged with this project name.
e The project name also appears as a prefix of the names of the resources.
E.g. in the previous example, service www will create a container ocarina www_1.

e The project name can be overridden with docker-compose -p.

Riccardo Tommasini - riccardo.tommasini@ut.ee - @rictomm 96

http://rictomm.me

