

[IF-5-OT7:TD] Foundation of data engineering

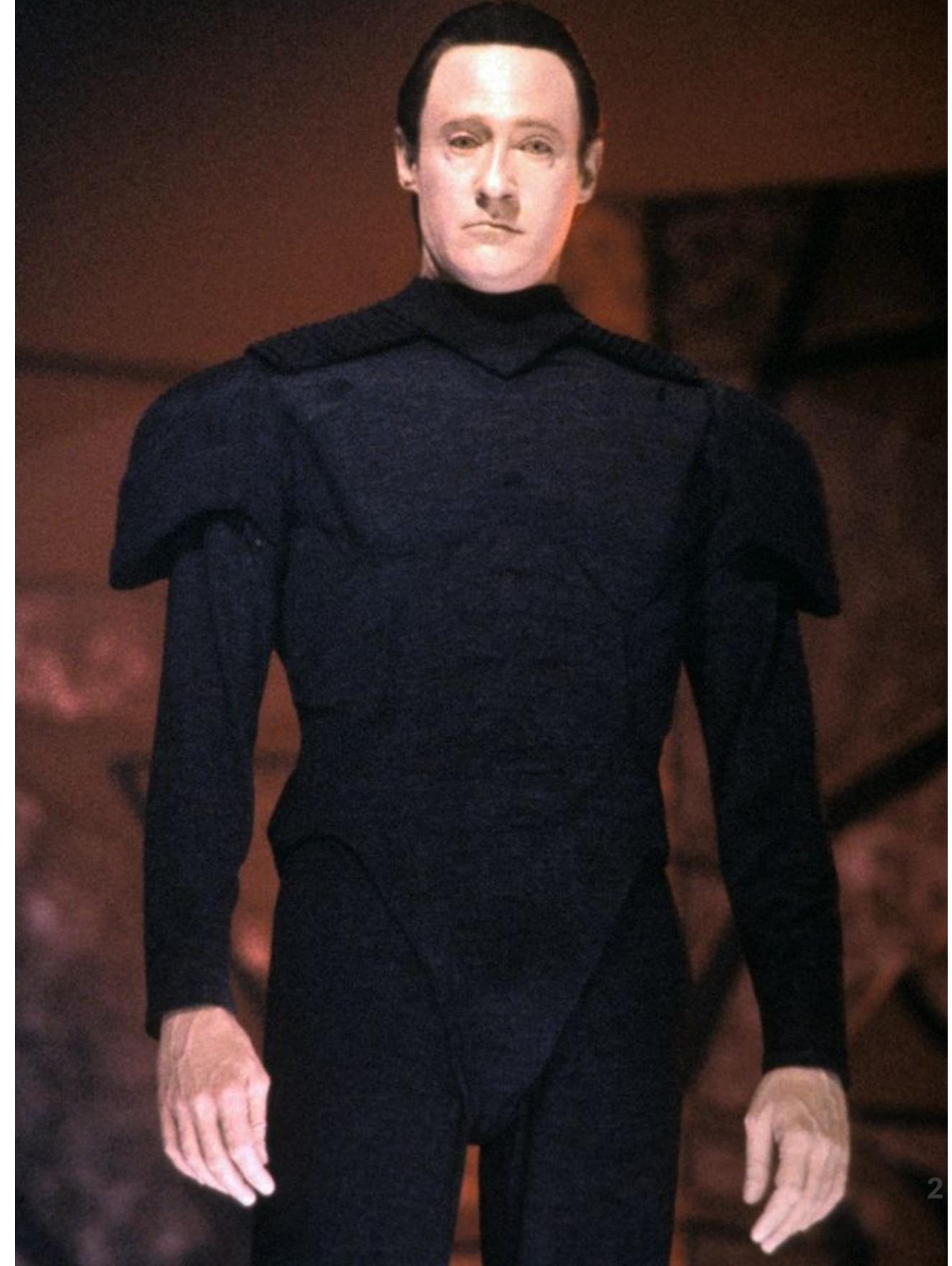
MCF Riccardo Tommasini

<http://rictomm.me>

riccardo.tommasini@insa-lyon.fr

Data Modelling

It is the process of defining the structure of the data for the purpose of communicating¹¹ or to develop an information systems¹².



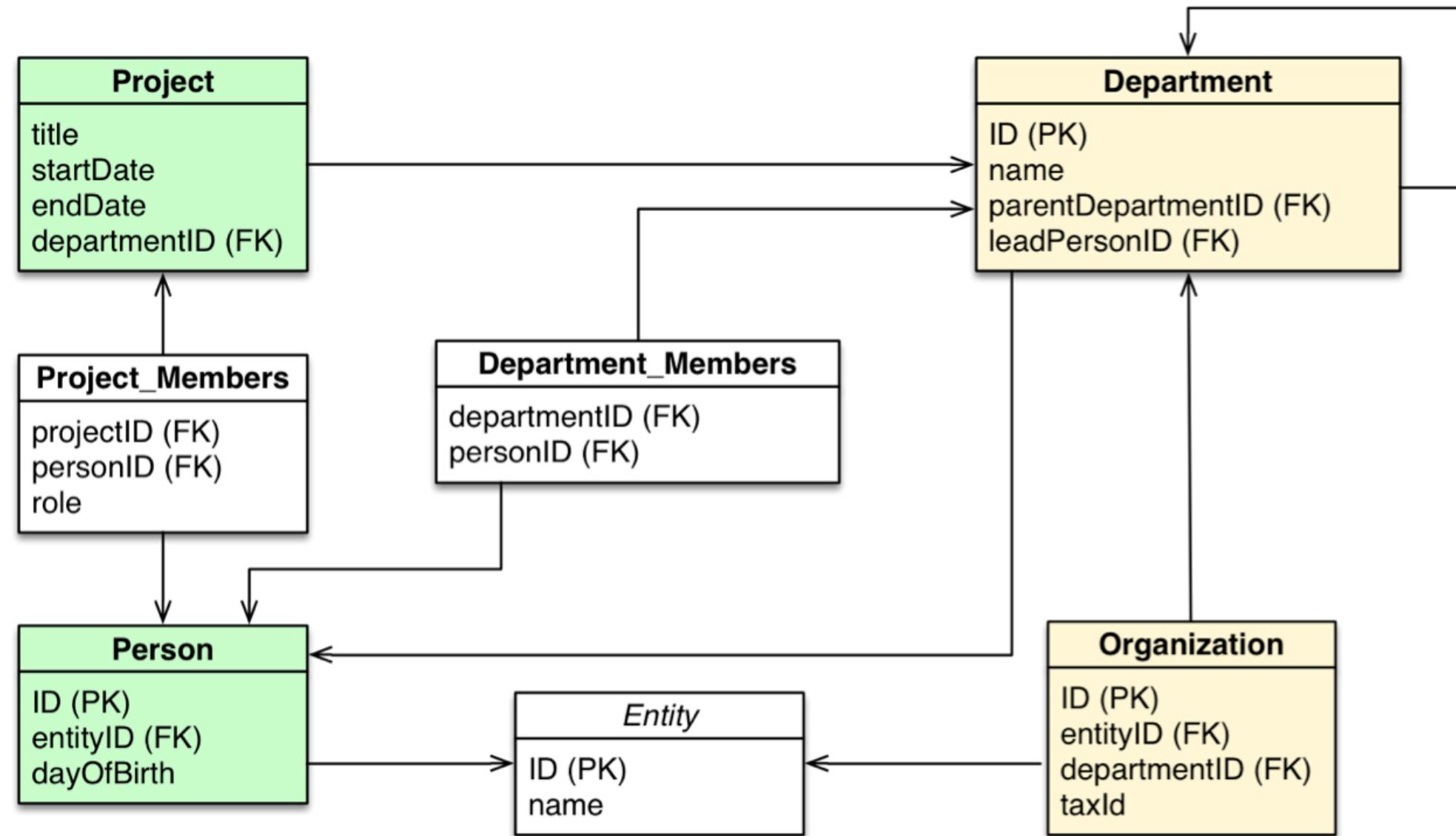
¹¹ between functional and technical people to show data needed for business processes

¹² between components of the information system, how data is stored and accessed.

What is a data model?

- A data model represents the structure and the integrity of the data elements of a (single) applications [2](#)
- Data models provide a framework for data to be used within information systems by giving specific definitions and formats.
- The literature of data management is rich of data models that aim at providing increased expressiveness to the modeller and capturing a richer set of semantics.

Any Example?



History of Data Models⁵

⁵ by Ilya Katsov

Key-Value

Ordered Key-Value

Big Table

Document,
Full-Text Search

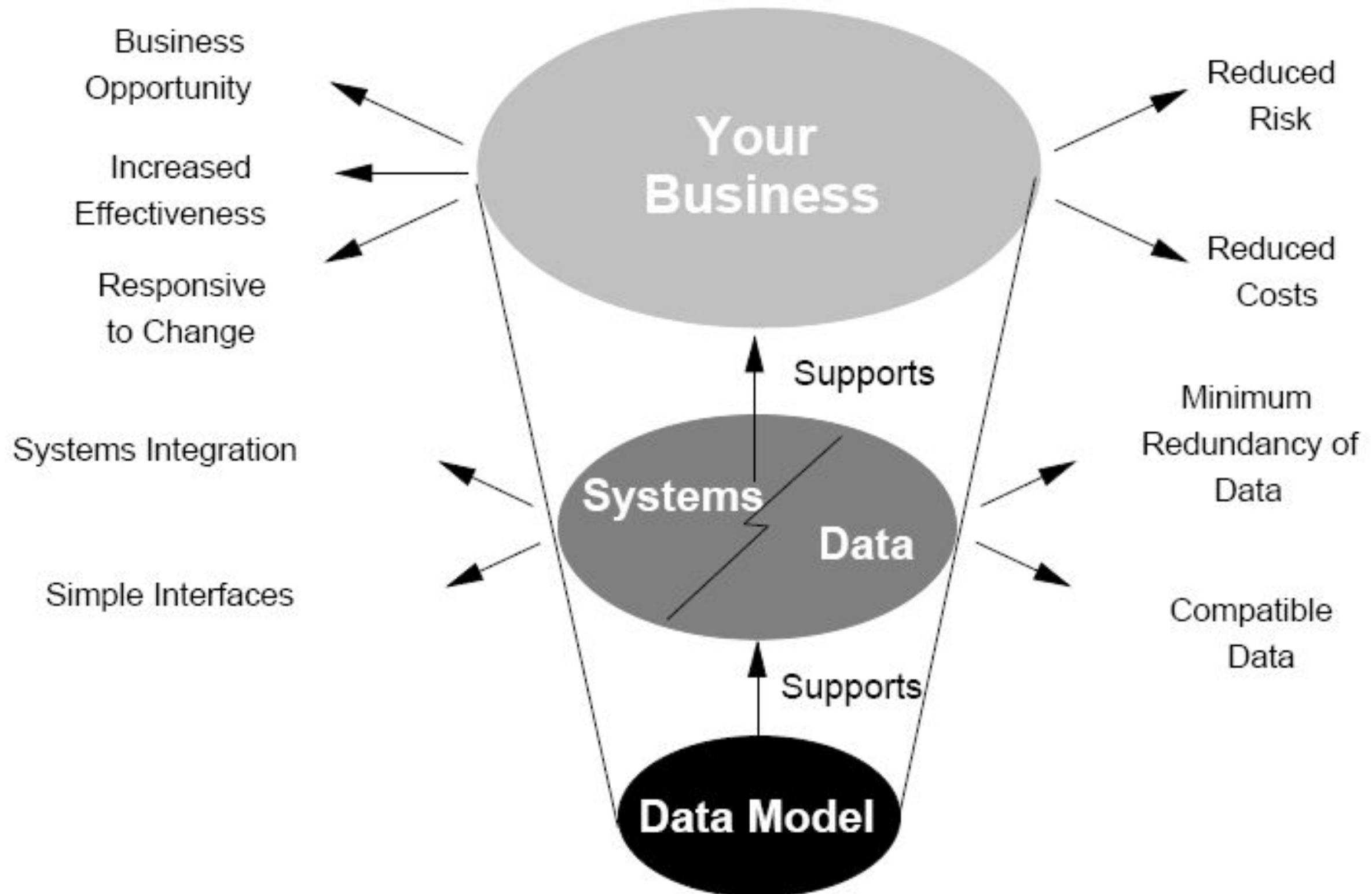
Graph

SQL

Data models are perhaps the most important part of developing software. They have such a profound effect not only on how the software is written, but also on how we think about the problem that we are solving¹³.

– Martin Kleppmann

¹³ [Designing Data-Intensive Applications](#)



Level of Data Modeling

Conceptual: The data model defines *WHAT* the system contains.

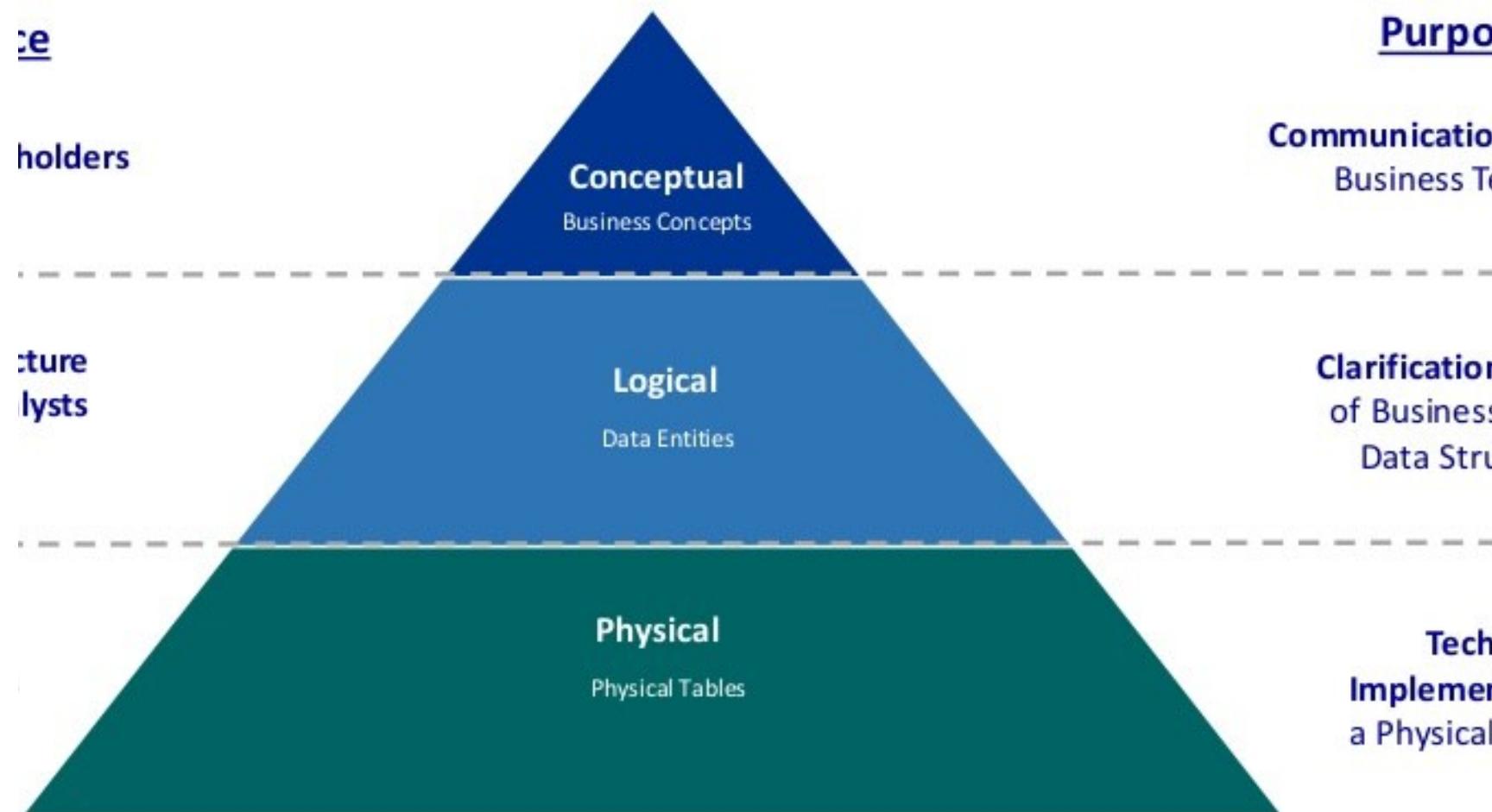
Logical: Defines *HOW* the system should be implemented regardless of the DBMS.

Physical: This Data Model describes *HOW* the information system will be implemented using a specific technology

14.

¹⁴ physical

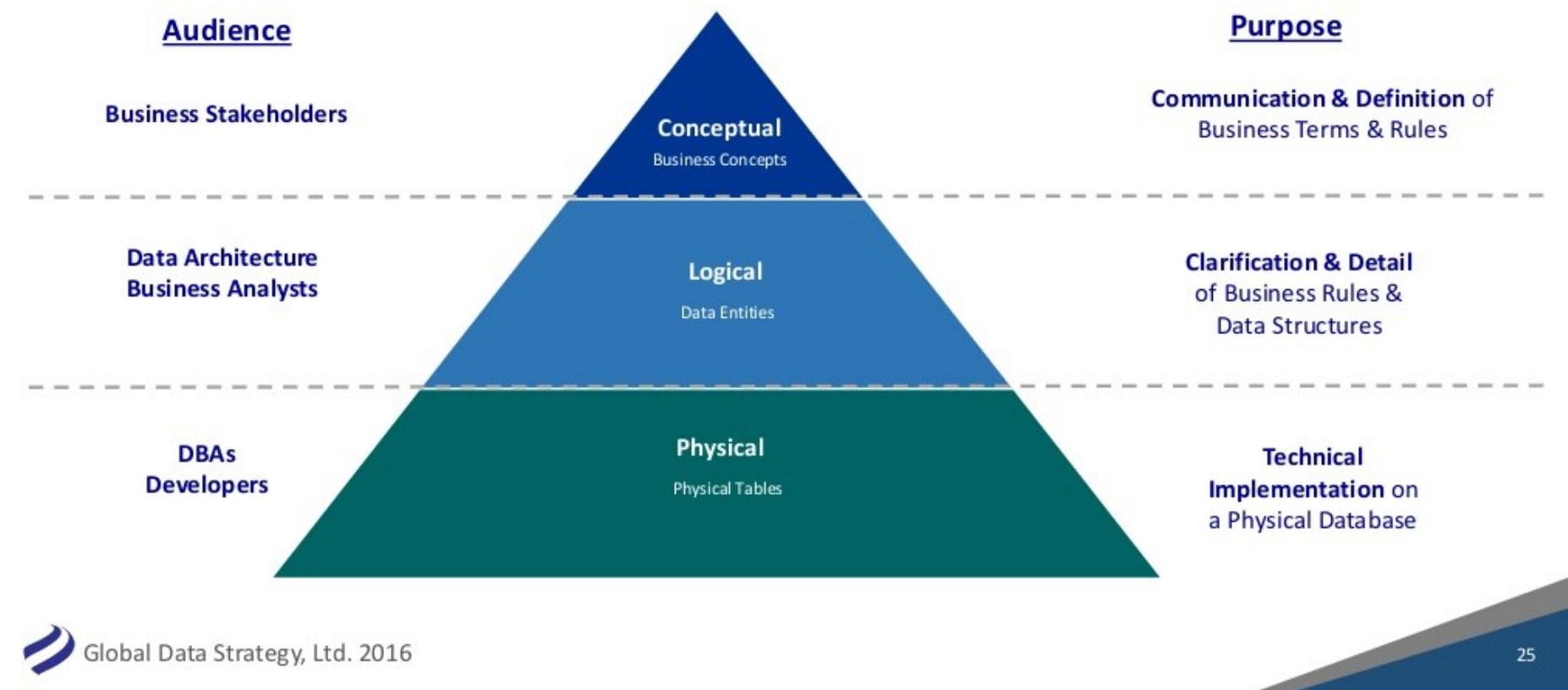
Level of Data Modeling



egy, Ltd. 2016

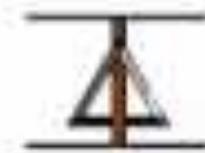
A Closer Look¹⁵

Levels of Data Modeling



¹⁵ [slides & video](#) by Donna Burbank

We need help from Rudyard Kipling



Copyright © 2012, Essential Strategies, Inc.

24/34

Conceptual

- Semantic Model (divergent)
 - Describes an enterprise in terms of the language it uses (the jargon).
 - It also tracks inconsistencies, i.e., semantic conflicts
- Architectural Model (convergent)
 - More fundamental, abstract categories across enterprise

Logical

Already bound to a technology, it typically refers already to implementation details

- Relational
- Hierarchical
- Key-Value
- Object-Oriented
- Graph

Physical

The physical level describes how data are **Stored** on a device.

- Data formats
- Distribution
- Indexes
- Data Partitions
- Data Replications

...and you are in the Big Data World

Data Modelling Techniques

According to Len Silverston (1997) only two modelling methodologies stand out, top-down and bottom-up.

- Bottom-up models or View Integration models are often the result of a [reengineering](#) "Reengineering (software)" effort. These models are usually physical, application-specific, and incomplete from an [enterprise perspective](#). They may not promote data sharing, especially if they are built without reference to other parts of the organization.⁷(<https://en.wikipedia.org/wiki/Datamodeling#citernote-SIG97-7>)
- Top-down [logical data models](#), on the other hand, are created in an abstract way by getting information from people who know the subject area. A system may not implement all the entities in a logical model, but the model serves as a reference point or template.⁷(<https://en.wikipedia.org/wiki/Datamodeling#citernote-SIG97-7>)

source: [wikipedia](#)

Data Modeling Techniques¹⁸

- **Entity-Relationship (ER) Modeling**[¹⁹] prescribes to design model encompassing the whole company and describe enterprise business through Entities and the relationships between them
 - it complies with 3rd normal form
 - tailored for OLTP
- **Dimensional Modeling (DM)**[¹¹⁰] focuses on enabling complete requirement analysis while maintaining high performance when handling large and complex (analytical) queries
 - The star model and the snowflake model are examples of DM
 - tailored for OLAP

¹⁸ [source](#)

[¹⁹]: by Bill Inmon

[¹¹⁰]: Ralph Kimball, book 'The Data Warehouse Toolkit – The Complete Guide to Dimensional Modeling'

[¹¹¹]: <https://en.wikipedia.org/wiki/Datavaultmodeling>

[¹¹²]: Evans, Eric. Domain-driven design: tackling complexity in the heart of software. Addison-Wesley Professional, 2004.

Data Modeling Techniques¹⁸

- **Data Vault (DV) Modeling**[^111] focuses on data integration trying to take the best of ER 3NF and DM
 - emphasizes establishment of an suitable basic data layer focusing on data history, traceability, and atomicity
 - one cannot use it directly for data analysis and decision making
- **Domain Driven Design**[^112] focuses on designing software based on the underlying domain.
 - promotes the usage of an ubiquitous language help communication between software developers and domain experts.
 - replaces the conceptual level for NOSQL

¹⁸ [source](#)

[^19]: by Bill Inmon

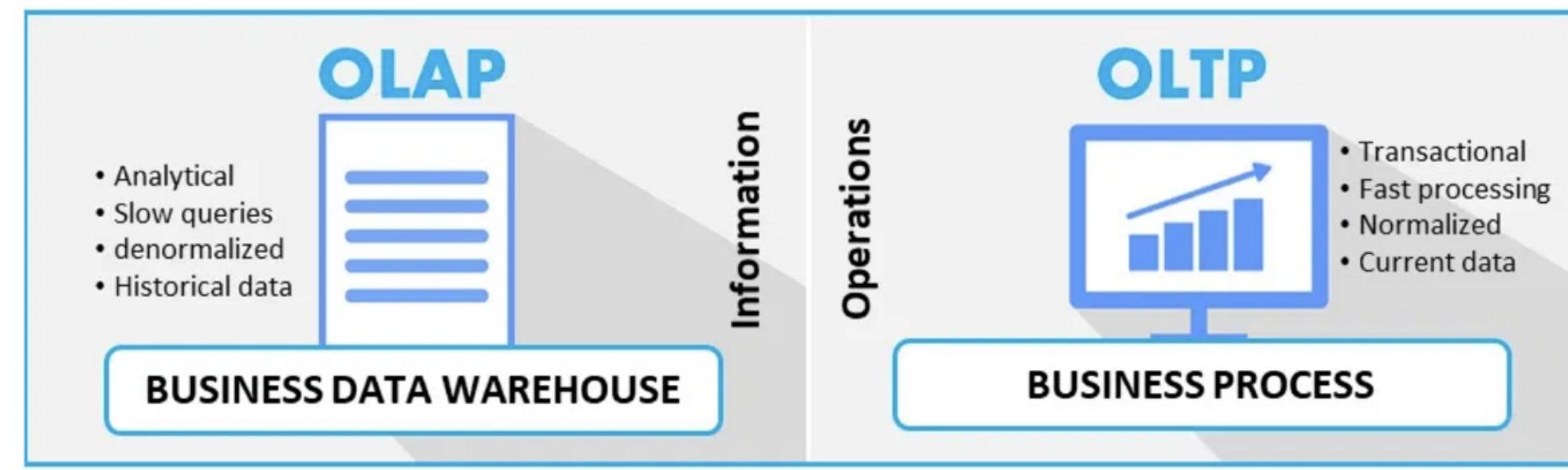
[^110]: Ralph Kimball, book 'The Data Warehouse Toolkit – The Complete Guide to Dimensional Modeling"

[^111]: <https://en.wikipedia.org/wiki/Datavaultmodeling>

[^112]: Evans, Eric. Domain-driven design: tackling complexity in the heart of software. Addison-Wesley Professional, 2004.

Let's Talk about Workloads

OLAP Vs OLTP



- **OLTP** systems are usually expected to be **highly available** and to process transactions with low latency, since they are often critical to the operation of the business.
- **OLAP** queries are often written by business analysts, and feed into reports that help the management of a company make better decisions (business intelligence).

Online Transactional Processing

Because these applications are interactive, the access pattern became known as **online**

Transactional means allowing clients to make low-latency reads and writes—as opposed to batch processing jobs, which only run periodically (for example, once per day).

Transactional: Refresh on ACID Properties

- ACID, which stands for Atomicity, Consistency, Isolation, and Durability¹¹
- **Atomicity** refers to something that cannot be broken down into smaller parts. It is not about concurrency (which comes with the I)
- **Consistency** (overused term), that here relates to the data *invariants* (integrity would be a better term IMHO)
- **Isolation** means that concurrently executing transactions are isolated from each other. Typically associated with serializability, but there weaker options.
- **Durability** means (fault-tolerant) persistency of the data, once the transaction is completed.

¹¹ between functional and technical people to show data needed for business processes

¹⁶ Theo Härder and Andreas Reuter: “Principles of Transaction-Oriented Database Recovery,” ACM Computing Surveys, volume 15, number 4, pages 287–317, December 1983. doi:10.1145/289.291

Online Analytical Processing

An OLAP system allows a data analyst to look at different cross-tabs on the same data by interactively selecting the attributes in the cross-tab

Statistical analysis often requires grouping on multiple attributes.

Analytical: Refresh on Analytical Operators¹⁷

- **Pivoting**: changing the columns with rows
- **Slicing**: creating a cross-tab for fixed values only. E.g fixing color to white and size to small dimensions are fixed.
- **Rollup**: moving from finer-granularity data to a coarser granularity. E.g. moving from aggregates by day to aggregates by month or year
- **Drill Down**: The opposite operation - that of moving from coarser granularity data to finer-granularity data

¹⁷ Database System Concepts Seventh Edition Avi Silberschatz Henry F. Korth, S. Sudarshan McGraw-Hill ISBN 9780078022159 [link](#)

Summary OLTP vs OLAP¹³

Property	OLTP	OLAP
Main read pattern	Small number of records per query, fetched by key	Aggregate over large number of records
Main write pattern	Random-access, low-latency writes from user input	Bulk import (ETL) or event stream
Primarily used by	End user/customer, via web application	Internal analyst, for decision support
What data represents	Latest state of data (current point in time)	History of events that happened over time
Dataset size	Gigabytes to terabytes	Terabytes to petabytes

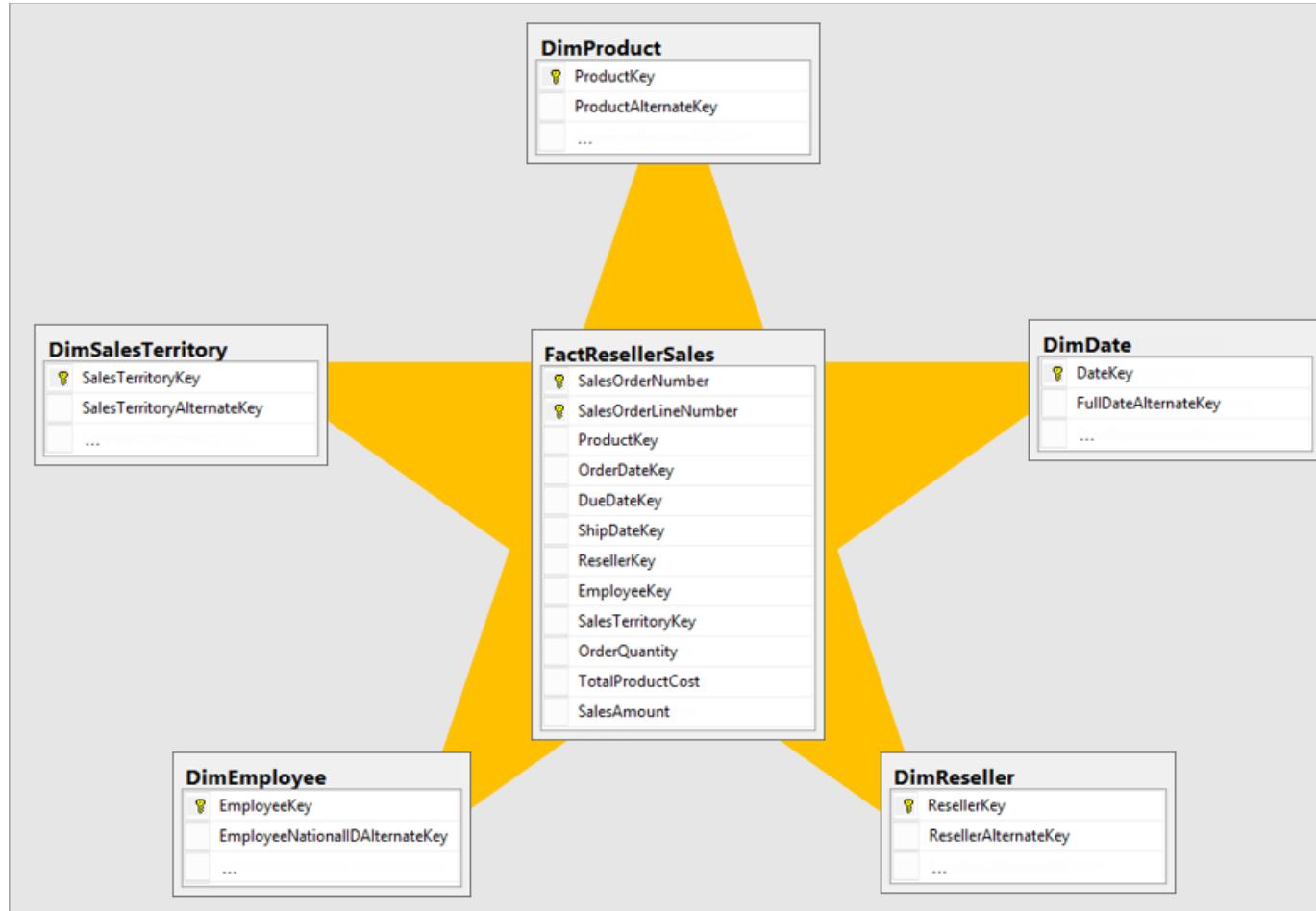
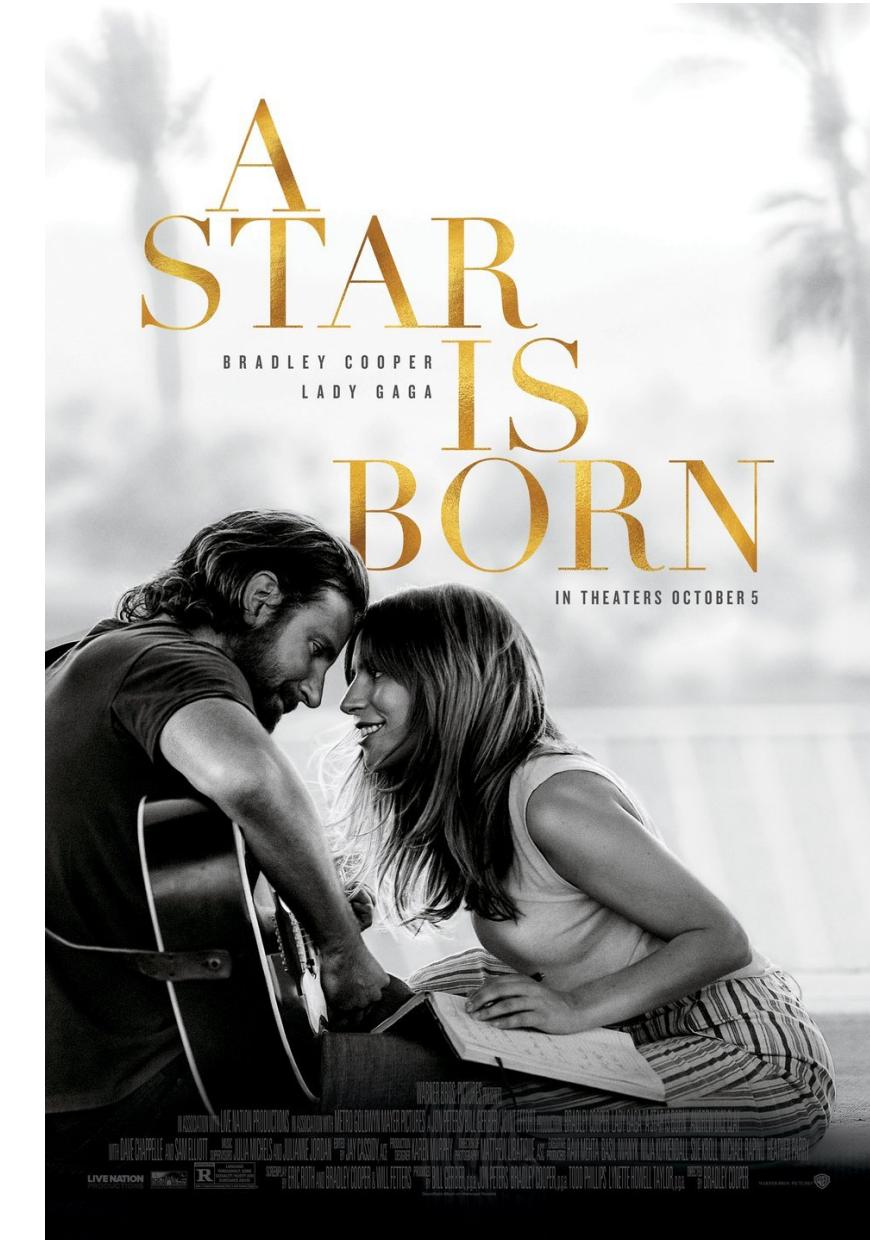
¹³ [Designing Data-Intensive Applications](#)

Data Modelling for Data Warehouses

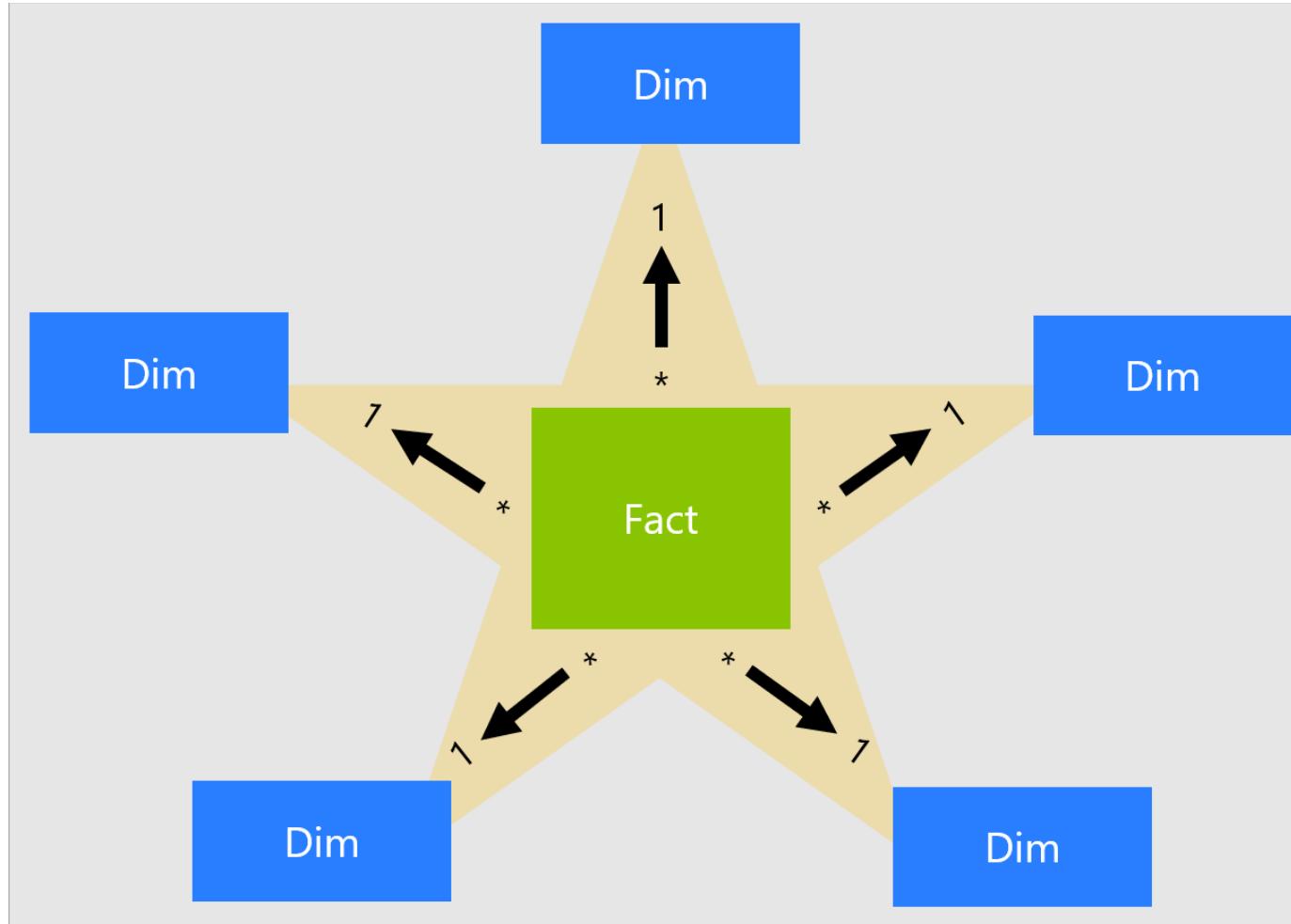
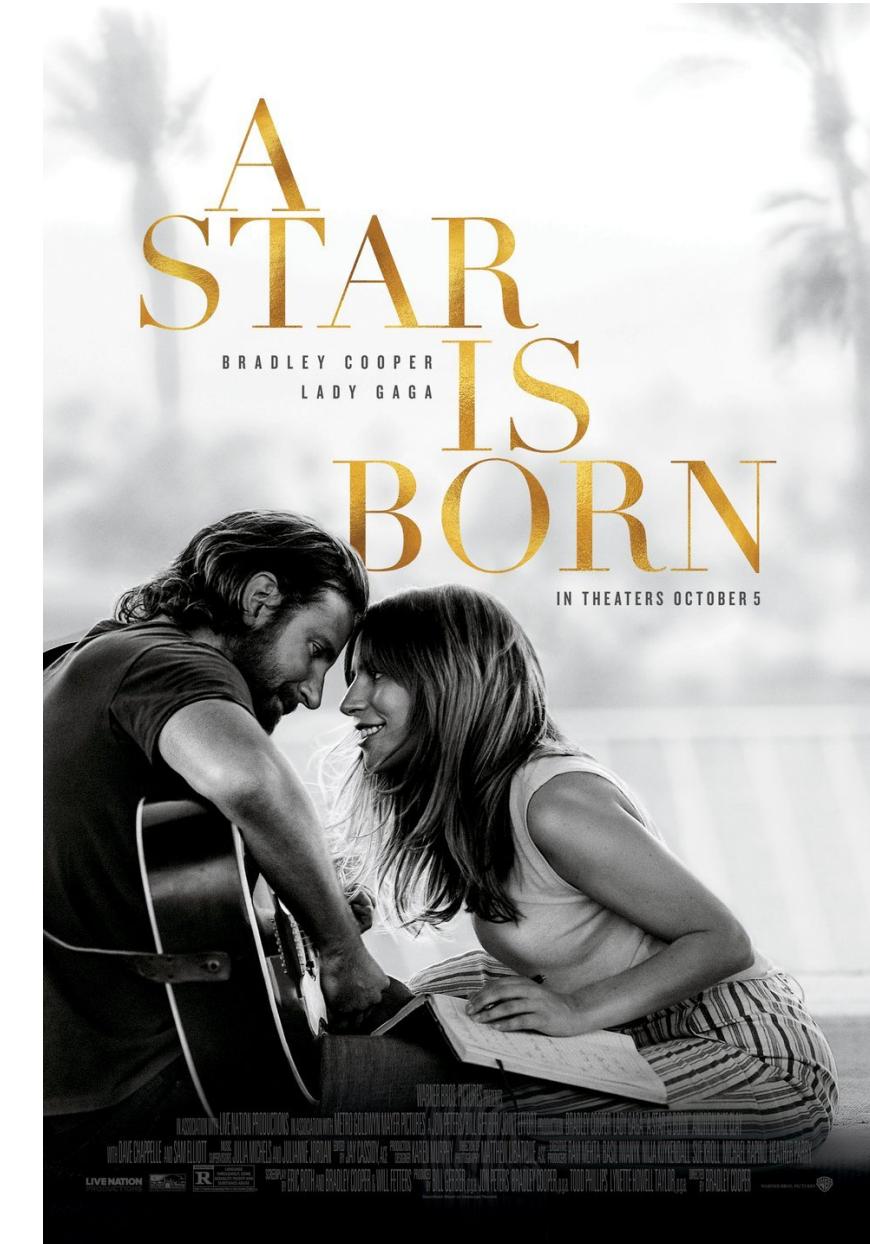
- Works in phases related to the aforementioned levels of abstractions
- Less diversity in the data model, usually relational in the form of a star schema (also known as dimensional modeling⁴¹).
- Redundancy and incompleteness are not avoided, fact tables often have over 100 columns, sometimes several hundreds.
- Optimized for OLAP
- The data model of a data warehouse is most commonly relational, because SQL is generally a good fit for analytic queries.
- Do not associate SQL with analytic, it depends on the data modeling.

⁴¹ Ralph Kimball and Margy Ross: The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd edition. John Wiley & Sons, July 2013. ISBN: 978-1-118-53080-1

A Star is Born



A Star is Born



Dimensional Modeling

What is dimensional modeling?

Dimensional modeling is widely accepted as the preferred technique for presenting analytic data because it addresses two simultaneous requirements:

- Deliver data that's understandable to business users.
- Deliver fast query performance.

It is a longstanding technique for making databases simple.

Main flow of dimensional modeling

1. Select the business process

- A *business process* is a set of activities with a goal.
 - BPs are critical activities that your organization performs, e.g., registering students for a class.
- Events from the process produce metrics.
- Most fact tables model one process.
- Choosing the process sets the design target.

2. Declare the grain

- Grain: what one row in the fact table represents.
- Everything (facts and dimensions) must align to the grain.
- Start atomic: model at the lowest captured level possible.
- Don't mix grains.

Main flow of dimensional modeling

1. Identify the dimensions

- Dimensions provide context ("features").
- Used for filtering, grouping, and labeling.
- Dimensions give meaning to data.
- Spend more effort modeling dimensions than facts.

2. Identify the facts

- Facts are numeric measurements produced by the business process.
- Prefer modeling **physical events**.

Facts and dimensions

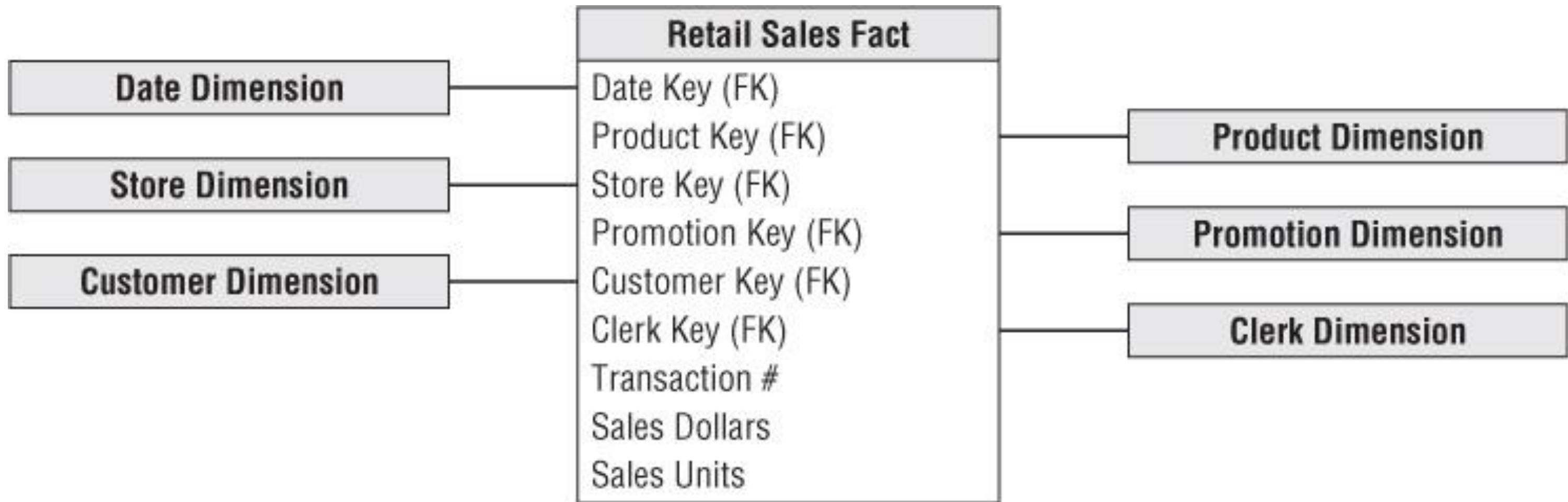
- **Facts** are the measurements that result from a business process event and are almost always numeric.
- **Dimensions** provide context to business process events, e.g., who, what, where, when, why, and how.

Translates into

Retail Sales Facts
Date Key (FK)
Product Key (FK)
Store Key (FK)
Promotion Key (FK)
Customer Key (FK)
Clerk Key (FK)
Transaction #
Sales Dollars
Sales Units

Product Dimension
Product Key (PK)
SKU Number (Natural Key)
Product Description
Brand Name
Category Name
Department Name
Package Type
Package Size
Abrasive Indicator
Weight
Weight Unit of Measure
Storage Type
Shelf Life Type
Shelf Width
Shelf Height
Shelf Depth
...

Star schema



Facts

- Each row corresponds to a **measurement event**.
- Most useful facts are **numeric** and **additive**.
- **Keys**
 - Fact tables usually have at least two foreign keys.
 - Composite primary key often formed by some/all dimension keys.
 - May also include a *surrogate key*, i.e., a unique identifier that you add to a table to support star schema modeling. By definition, it's not defined or stored in the source data
- The data on each row is at a specific **level of detail (grain)**.
- Grain should be **consistent** for the entire fact table.

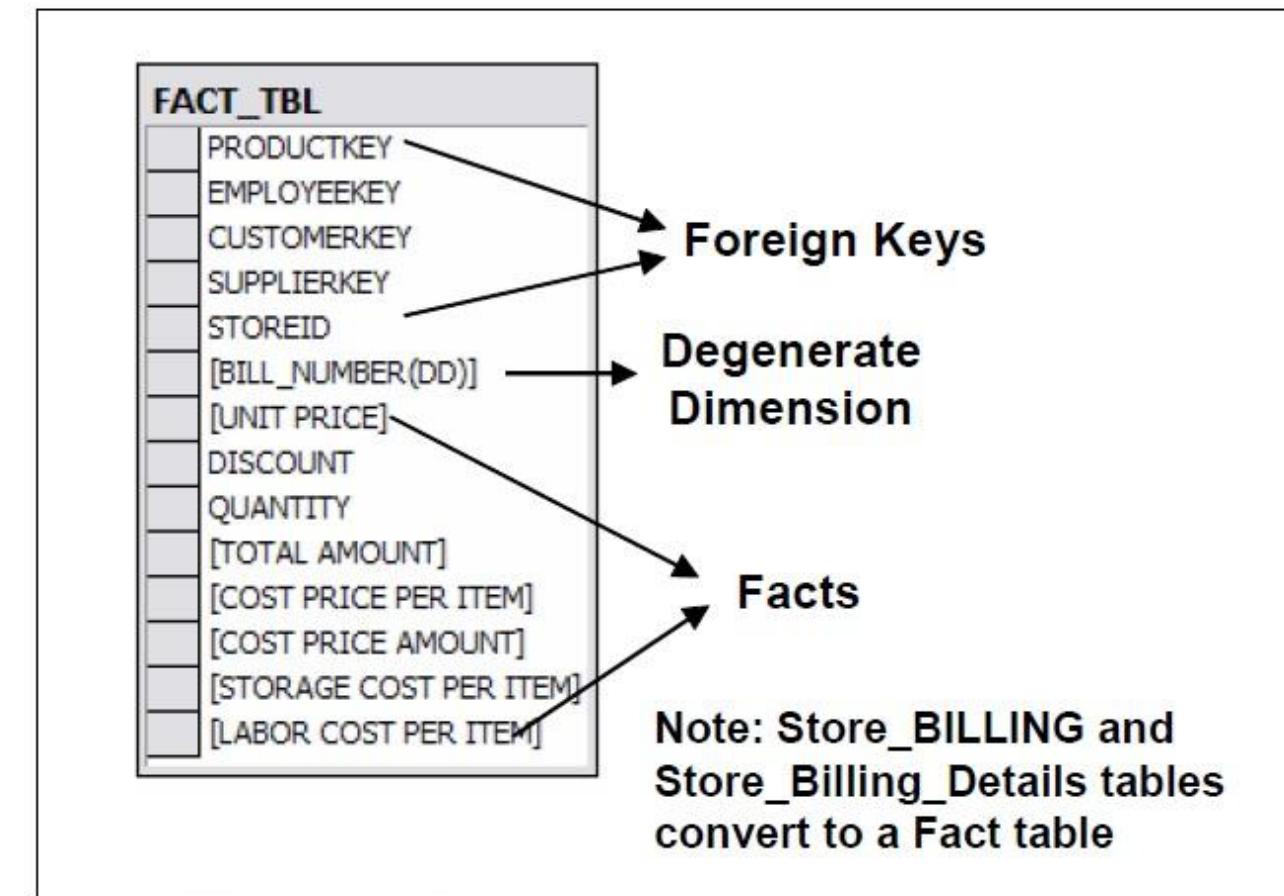


Figure 6-8 Fact table

Source: Dimensional Modeling: In a Business Intelligence Environment, Page 216

Facts: Grain types

The **grain** establishes exactly what a single fact table row represents. Three common grains categorize all fact tables: transactional, periodic snapshot, or accumulating snapshot.

	Transaction	Periodic Snapshot	Accumulating Snapshot
Periodicity	Discrete transaction point in time	Recurring snapshots at regular, predictable intervals	Indeterminate time span for evolving pipeline/workflow
Grain	1 row per transaction or transaction line	1 row per snapshot period plus other dimensions	1 row per pipeline occurrence
Date dimension(s)	Transaction date	Snapshot date	Multiple dates for pipeline's key milestones
Facts	Transaction performance	Cumulative performance for time interval	Performance for pipeline occurrence
Fact table sparsity	Sparse or dense, depending on activity	Predictably dense	Sparse or dense, depending on pipeline occurrence
Fact table updates	No updates, unless error correction	No updates, unless error correction	Updated whenever pipeline activity occurs

Dimensions

- Contain the **textual context** associated with a measurement event.
- Describe the **who, what, where, when, how, and why**.
- Generally **fewer rows, more columns** than fact tables.
- Use a **single surrogate primary key**.
- **Heuristic:** identify dimensions with “by” phrases:
 - Sales **by** store
 - Clicks **by** customer
 - Events **by** line

DIMENSIONAL MODELING

Customer Dimension
Customer Age
Customer Geo
Customer
Contact Info
Customer Job
Title
Customer ID
CustomerKey

Sales Fact Table
Sales Amount
Quantity Sold
Profit
CustomerKey
ProductKey
OrderDateKey

Product Dimension
Product Name
Product Number
Product Brand
Category
Subcategory
ProductKey

Date Dimension
DateKey
Year
Quarter
Month
Day
Fiscal Columns

Slowly Changing Dimensions (SCD)

What happens if something “changes”?

- A customer moves
- Product price changes?

Slowly Changing Dimensions (SCD)

SCD Type	Dimension Table Action	Impact on Fact Analysis
Type 0	No change to attribute value	Facts associated with attribute's original value
Type 1	Overwrite attribute value	Facts associated with attribute's current value
Type 2	Add new dimension row for profile with new attribute value	Facts associated with attribute value in effect when fact occurred
Type 3	Add new column to preserve attribute's current and prior values	Facts associated with both current and prior attribute alternative values
Type 4	Add mini-dimension table containing rapidly changing attributes	Facts associated with rapidly changing attributes in effect when fact occurred
Type 5	Add type 4 mini-dimension, plus overwritten type 1 mini-dimension key in base dimension	Facts associated with rapidly changing attributes in effect when fact occurred, plus current rapidly changing attribute values
Type 6	Add type 1 overwrites to type 2 dimension row, and overwrite all prior dimension rows	Facts associated with attribute value in effect when fact occurred, plus current values
Type 7	Add type 2 dimension row with new attribute value, plus view limited to current rows and/or attribute values	Facts associated with attribute value in effect when fact occurred, plus current values

Slowly Changing Dimensions (SCD)

SCD Type	Dimension Table Action	Impact on Fact Analysis
Type 0	No change to attribute value	Facts associated with attribute's original value
Type 1	Overwrite attribute value	Facts associated with attribute's current value
Type 2	Add new dimension row for profile with new attribute value	Facts associated with attribute value in effect when fact occurred
Type 3	Add new column to preserve attribute's current and prior values	Facts associated with both current and prior attribute alternative values
Type 4	Add mini-dimension table containing rapidly changing attributes	Facts associated with rapidly changing attributes in effect when fact occurred
Type 5	Add type 4 mini-dimension, plus overwritten type 1 mini-dimension key in base dimension	Facts associated with rapidly changing attributes in effect when fact occurred, plus current rapidly changing attribute values
Type 6	Add type 1 overwrites to type 2 dimension row, and overwrite all prior dimension rows	Facts associated with attribute value in effect when fact occurred, plus current values
Type 7	Add type 2 dimension row with new attribute value, plus view limited to current rows and/or attribute values	Facts associated with attribute value in effect when fact occurred, plus current values

Queryable Table

Type	Dimension Table Action	Impact on Fact Analysis
0	No change to attribute value	Facts remain associated with the original attribute value
1	Overwrite attribute value	Facts associated with the current value
2	Add a new dimension row with the new attribute value	Facts associated with the value in effect when the fact occurred
3	Add a new column to preserve current and prior values	Facts analyzable by both current and prior alternative values
4	Add a mini-dimension for rapidly changing attributes	Facts associated with the rapidly changing attributes in effect at the time
5	Type 4 mini-dimension plus type 1 overwrite of mini-dimension key in base dimension	Facts associated with rapidly changing attributes in effect at the time plus current rapidly changing values
6	Type 2 with type 1 overwrites (a.k.a. hybrid)	Facts associated with historical value plus current values
7	Type 2 with a view limited to current rows/values	Facts associated with historical value plus current values

Common patterns

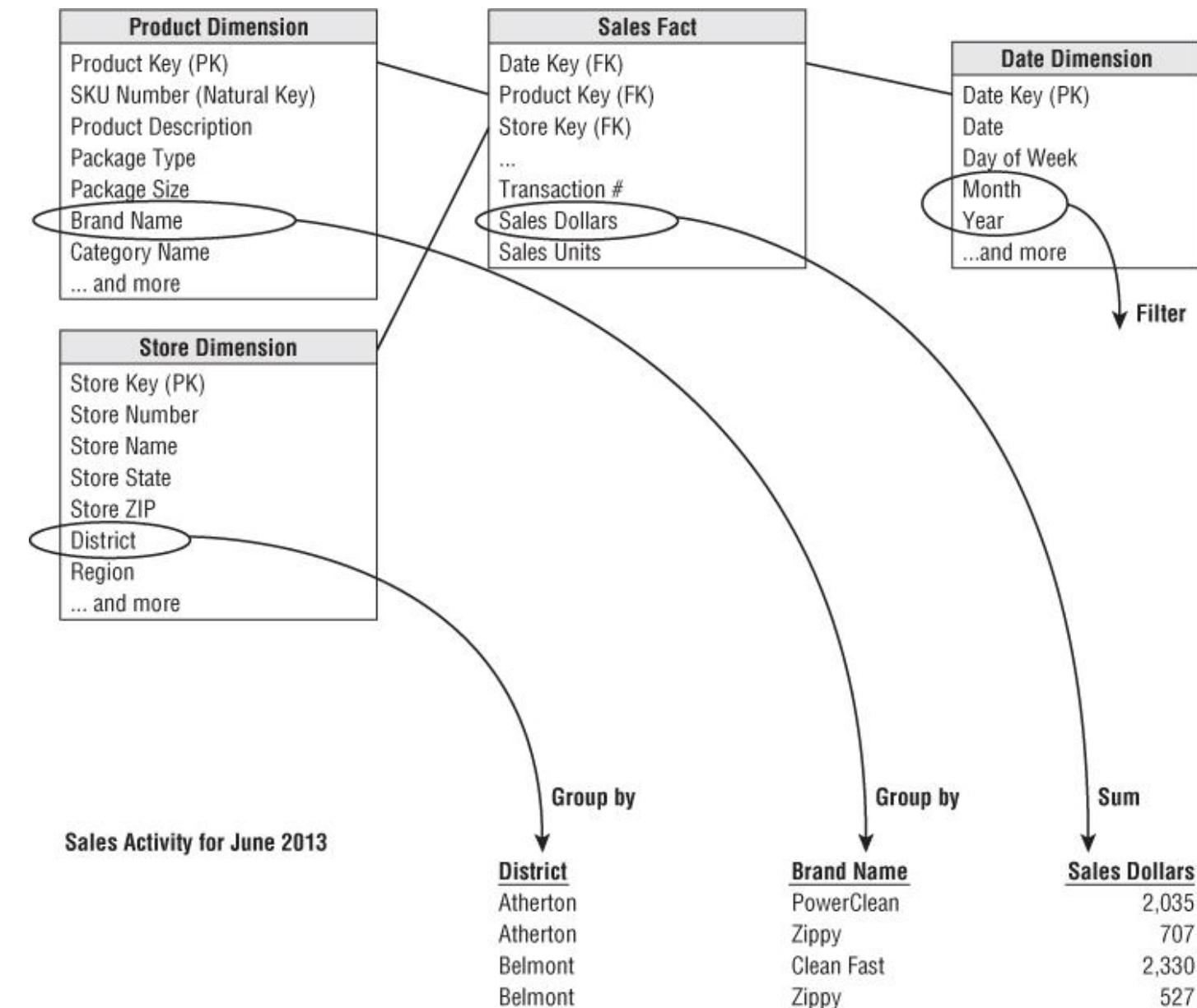
- **Type 1:** Overwrite in place.
- **Type 2:** Add a new row; invalidate (or end-date) the old row.

Bus matrix

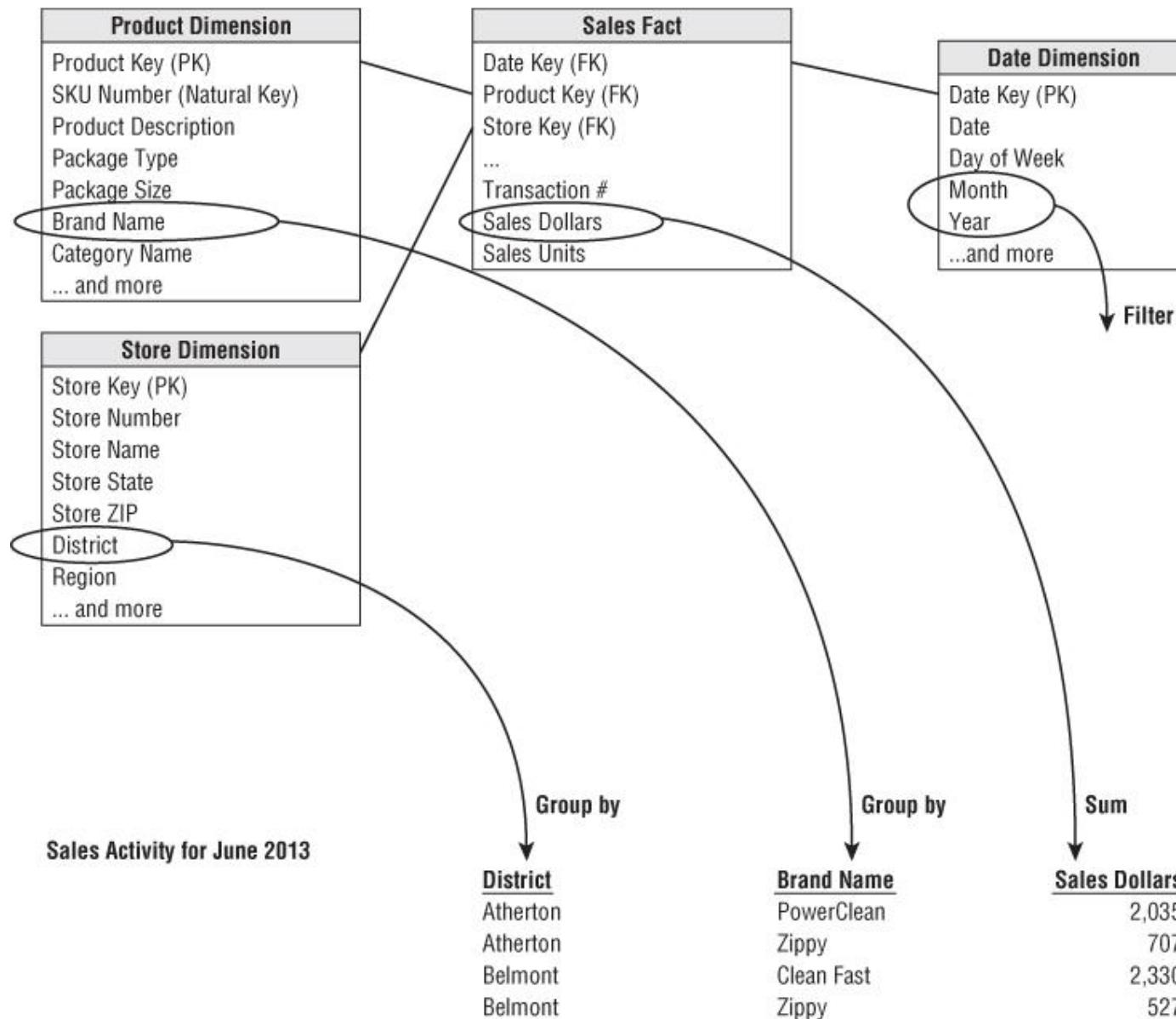
- A **blueprint/design tool**.
- **Rows:** business processes.
- **Columns:** (core) dimensions.
- Mark with **X** where a dimension participates in a process.

BUSINESS PROCESSES	COMMON DIMENSIONS						
	<i>Date</i>	<i>Product</i>	<i>Warehouse</i>	<i>Store</i>	<i>Promotion</i>	<i>Customer</i>	<i>Employee</i>
Issue Purchase Orders	X	X	X				
Receive Warehouse Deliveries	X	X	X				X
Warehouse Inventory	X	X	X				
Receive Store Deliveries	X	X	X	X			X
Store Inventory	X	X		X			
Retail Sales	X	X		X	X	X	X
Retail Sales Forecast	X	X		X			
Retail Promotion Tracking	X	X		X	X		
Customer Returns	X	X		X	X	X	X
Returns to Vendor	X	X		X			X
Frequent Shopper Sign-Ups	X			X		X	X

Facts and dimensions in SQL



Facts and dimensions in SQL



```

SELECT
  store.district_name,
  product.brand,
  SUM(sales_facts.sales_dollars) AS "Sales Dollars"
FROM
  store,
  product,
  date,
  sales_facts
WHERE
  date.month_name = 'January' AND
  date.year = 2013 AND
  store.store_key = sales_facts.store_key AND
  product.product_key = sales_facts.product_key AND
  date.date_key = sales_facts.date_key
GROUP BY
  store.district_name,
  product.brand;
  
```

Dimensional modeling is not all...

- **Dimensional modeling** (Star schema / “Kimball”)
- **Inmon** (Enterprise Data Warehouse, top-down)
- **Data Vault** (Hub-Link-Satellite)
- **OBT** (One-Big-Table / wide table)

Tips, tricks, considerations

- **Handling NULLs**
 - **Fact tables:** NULL may be acceptable for the measure itself.
 - **Dimension FKs:** avoid NULLs; instead use **Unknown** members (e.g., ID = -1, Name = "Unknown").
- **Meta-columns**
 - ValidFrom / ValidTo (SCDs)
 - CreatedByJobId, ModifiedByJobId, CreatedAt, ModifiedAt, ...
- **Is it a fact or a dimension?**
 - Be careful with entities like **Claim**, **Support ticket**, **Loan application**.
 - Avoid **1:1** fact:dimension mapping.
- **Dimensions for feature engineering**
 - Especially **DimDate** and **DimTime**.

The 5/10 Essential Rules of Dimensional Modeling (Read)⁴²

1. Load detailed atomic data into dimensional structures.
2. Structure dimensional models around business processes.
3. Ensure that every fact table has an associated date dimension table.
4. Ensure that all facts in a single fact table are at the same grain or level of detail.
5. Resolve many-to-many relationships in fact tables.

⁴² <https://www.kimballgroup.com/2009/05/the-10-essential-rules-of-dimensional-modeling/>

The 10/10 Essential Rules of Dimensional Modeling (Read)⁴²

1. Resolve many-to-one relationships in dimension tables.
2. Store report labels and filter domain values in dimension tables.
3. Make certain that dimension tables use a surrogate key.
4. Create conformed dimensions to integrate data across the enterprise.
5. Continuously balance requirements and realities to deliver a DW/BI solution that's accepted by business users and that supports their decision-making.

⁴² <https://www.kimballgroup.com/2009/05/the-10-essential-rules-of-dimensional-modeling/>

Further reading

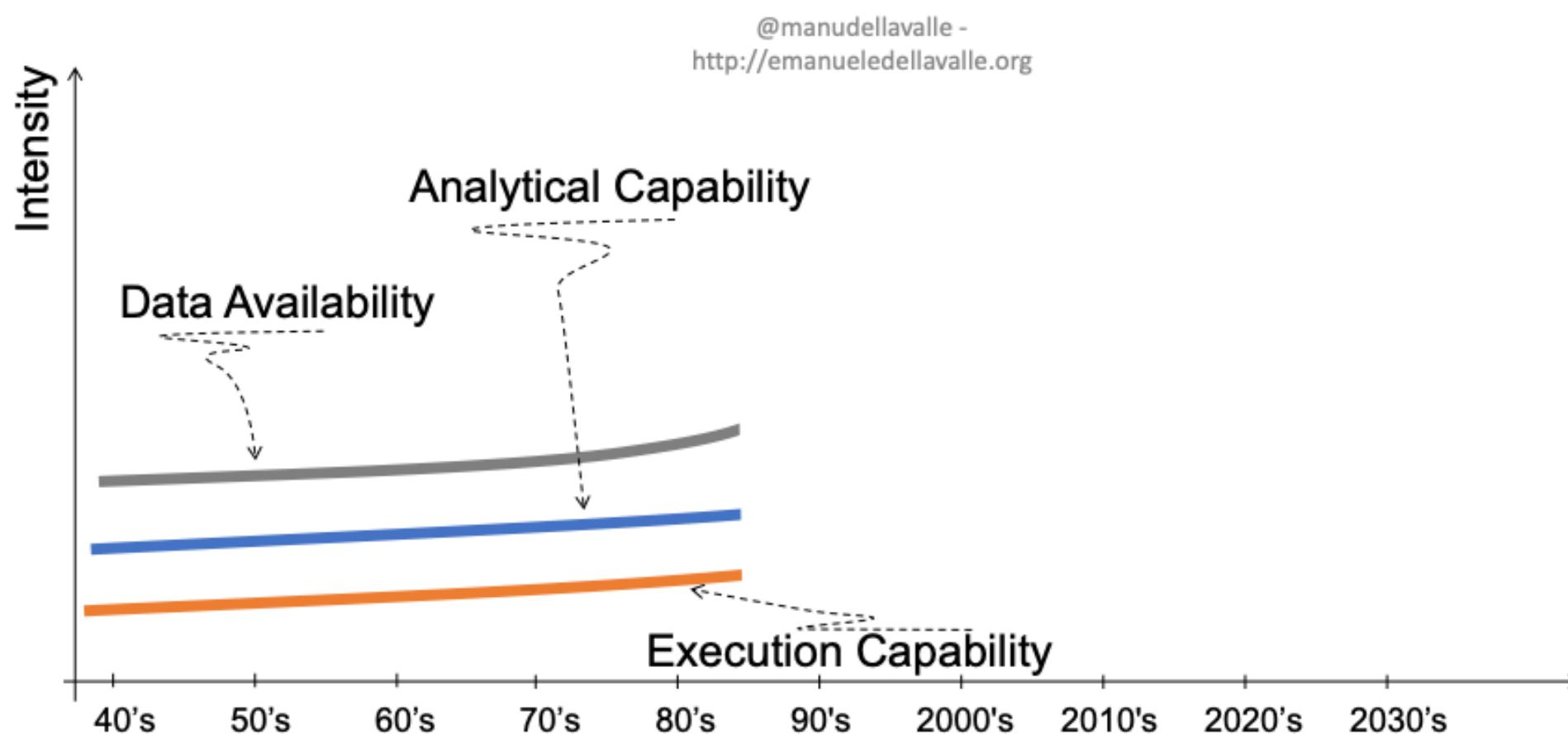
- *The Data Warehouse Toolkit* (3rd ed.) – Kimball & Ross.
 - Chapter 2 and 3 on [O'Reilly Online](#)
 - [Techniques](#)

The Complete
Guide to
Dimensional
Modeling

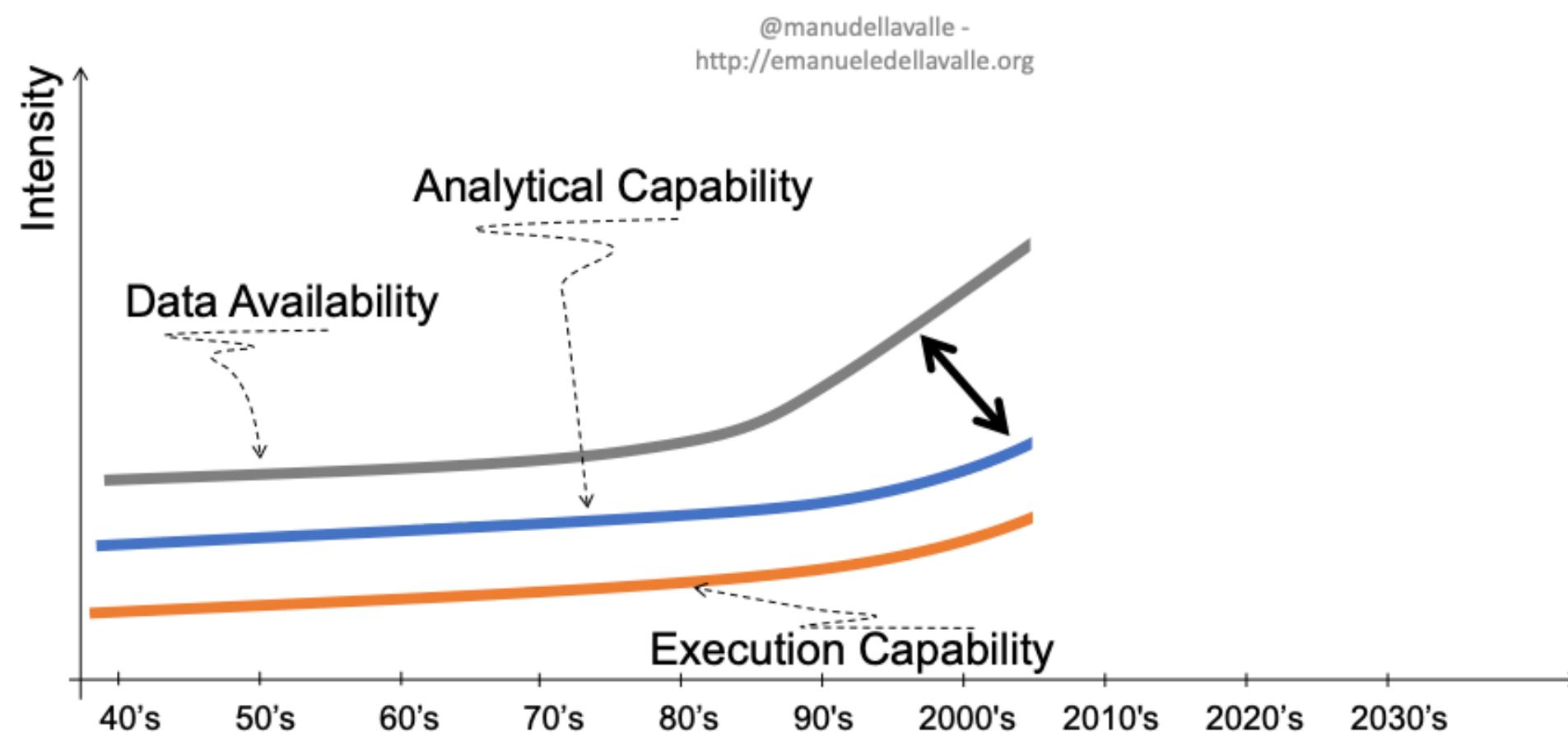
Ralph Kimball
Margy Ross

Data Modelling for Big Data

From data to analysis and execution



The appearance of the “Big Data”

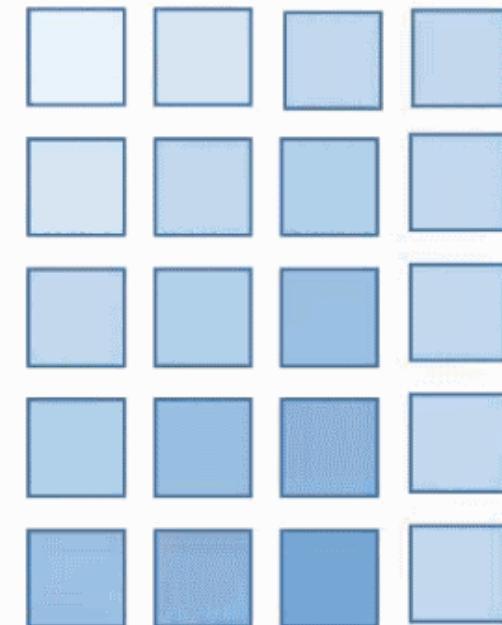
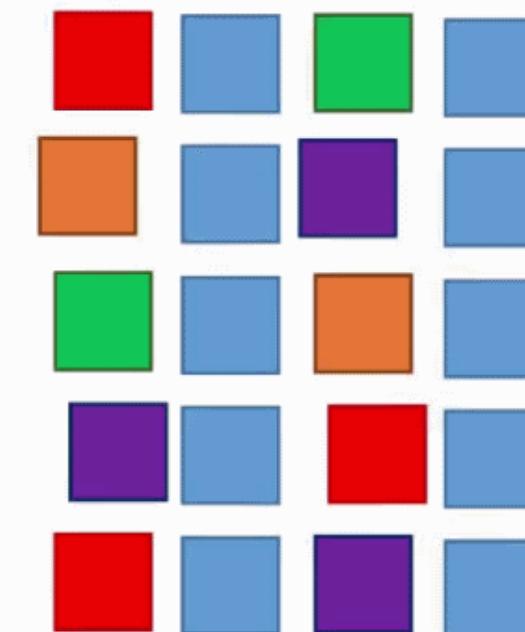


The Data Landscape

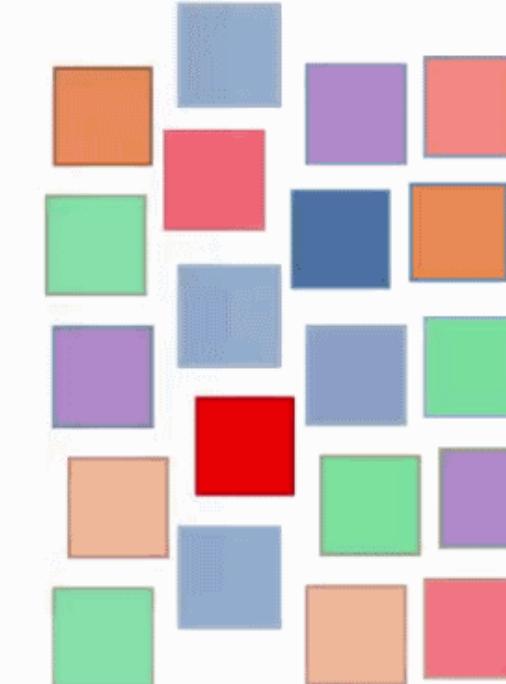
Structured, Unstructured and Semi-Structured

Semi-Structured Data

Structured Data



Unstructured Data



Horizontal vs Vertical Scalability

Horizontal vs Vertical Scalability

- "Traditional" SQL system scale **vertically** (scale up) - Adding data to a "traditional" SQL system may degrade its performances
 - When the machine, where the SQL system runs, no longer performs as required, the solution is to buy a better machine (with more RAM, more cores and more disk)
- Big Data solutions scale **horizontally** (scale out)
 - Adding data to a Big Data solution may degrade its performances
 - When the machines, where the big data solution runs, no longer performs as required, the solution is to add another machine

hardware

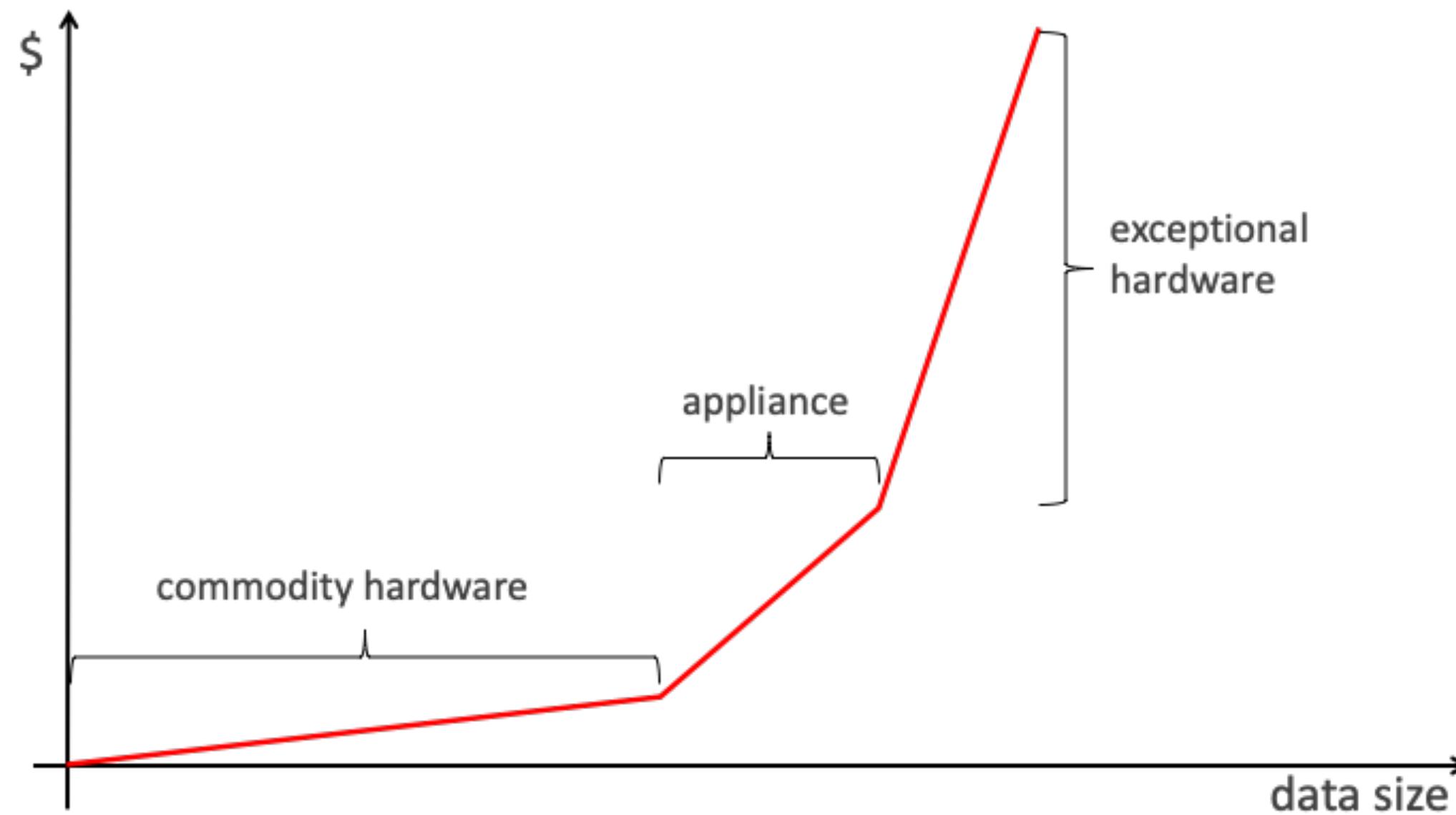
Commodity

- CPU: 8-32 cores
- RAM: 16-64 GB
- Disk: 1-3 TB
- Network: 10 GE

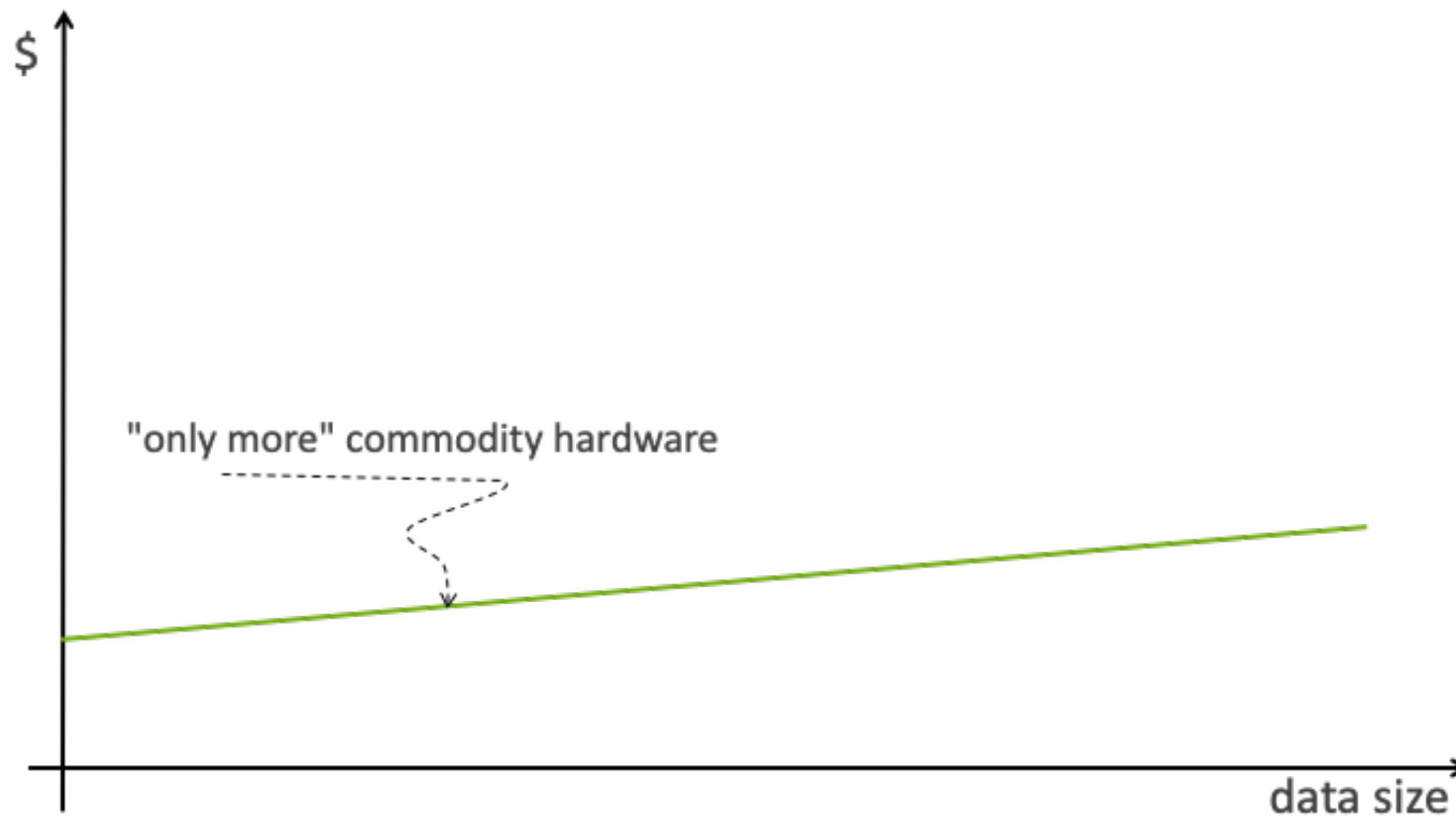
Appliance

- CPU: 576 cores
- RAM: 24TB
- Disk: 360TB of SSD/rack
- Network: 40 Gb/second InfiniBand

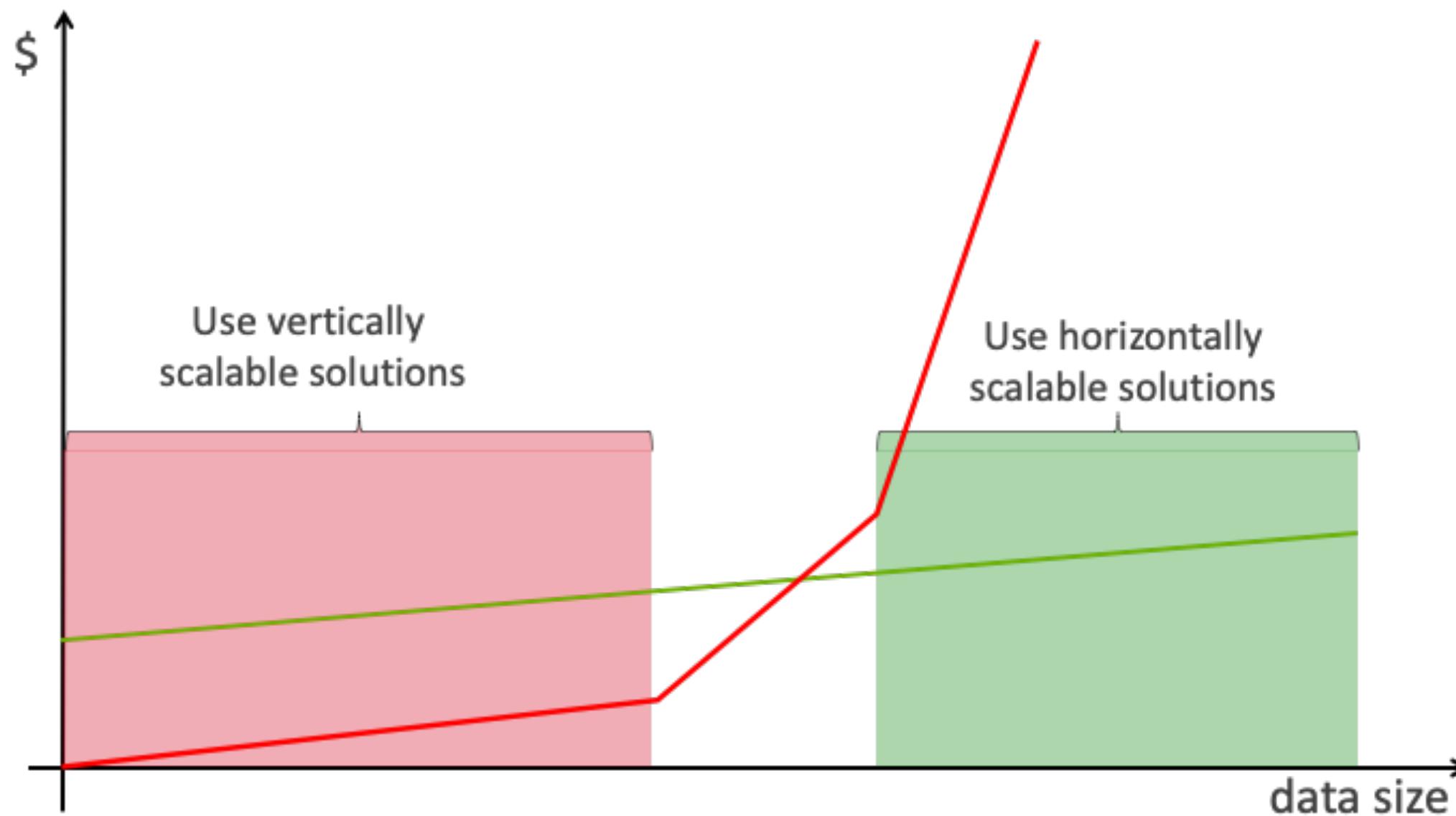
Vertical Scalability



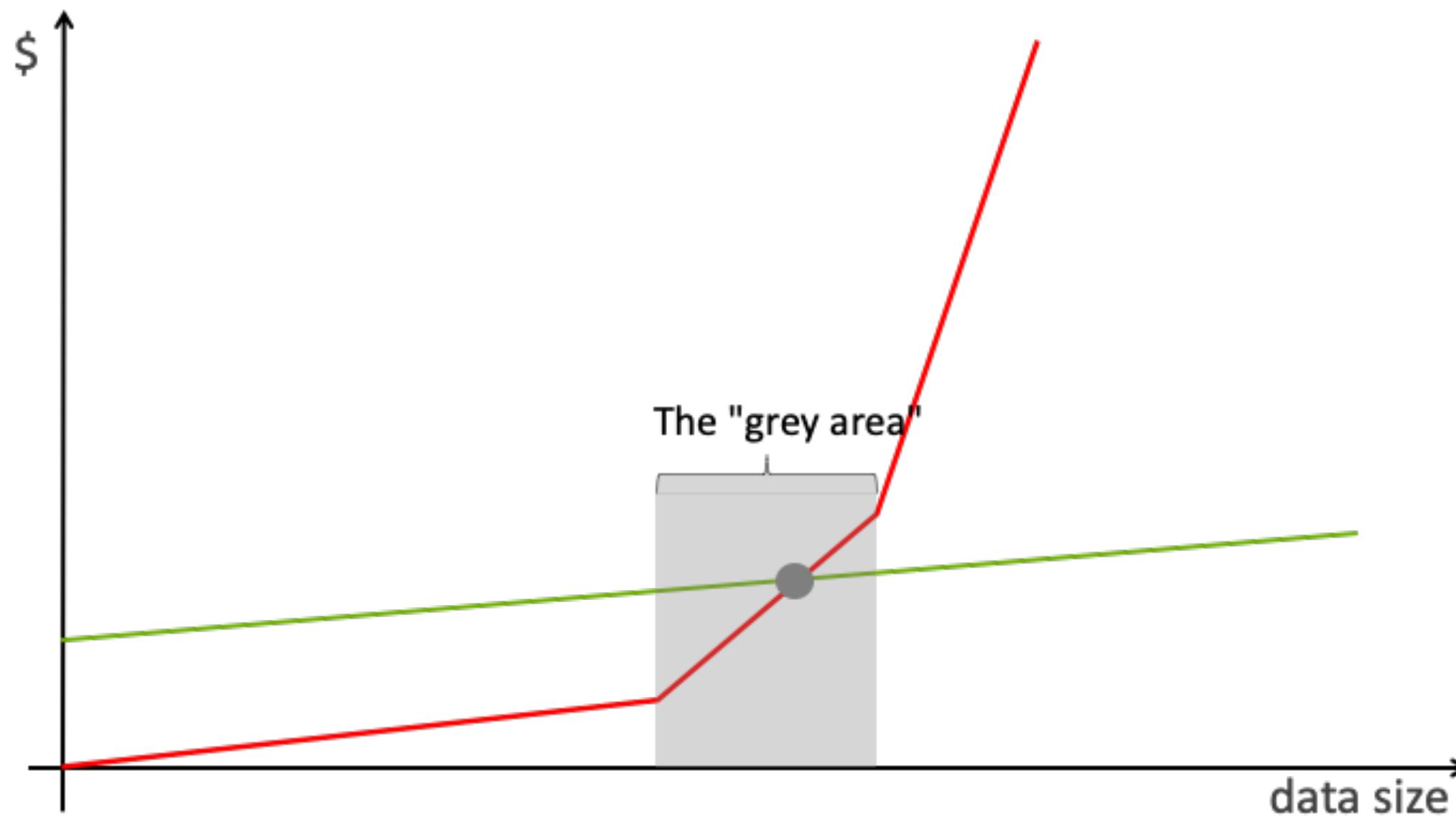
Horizontal Scalability



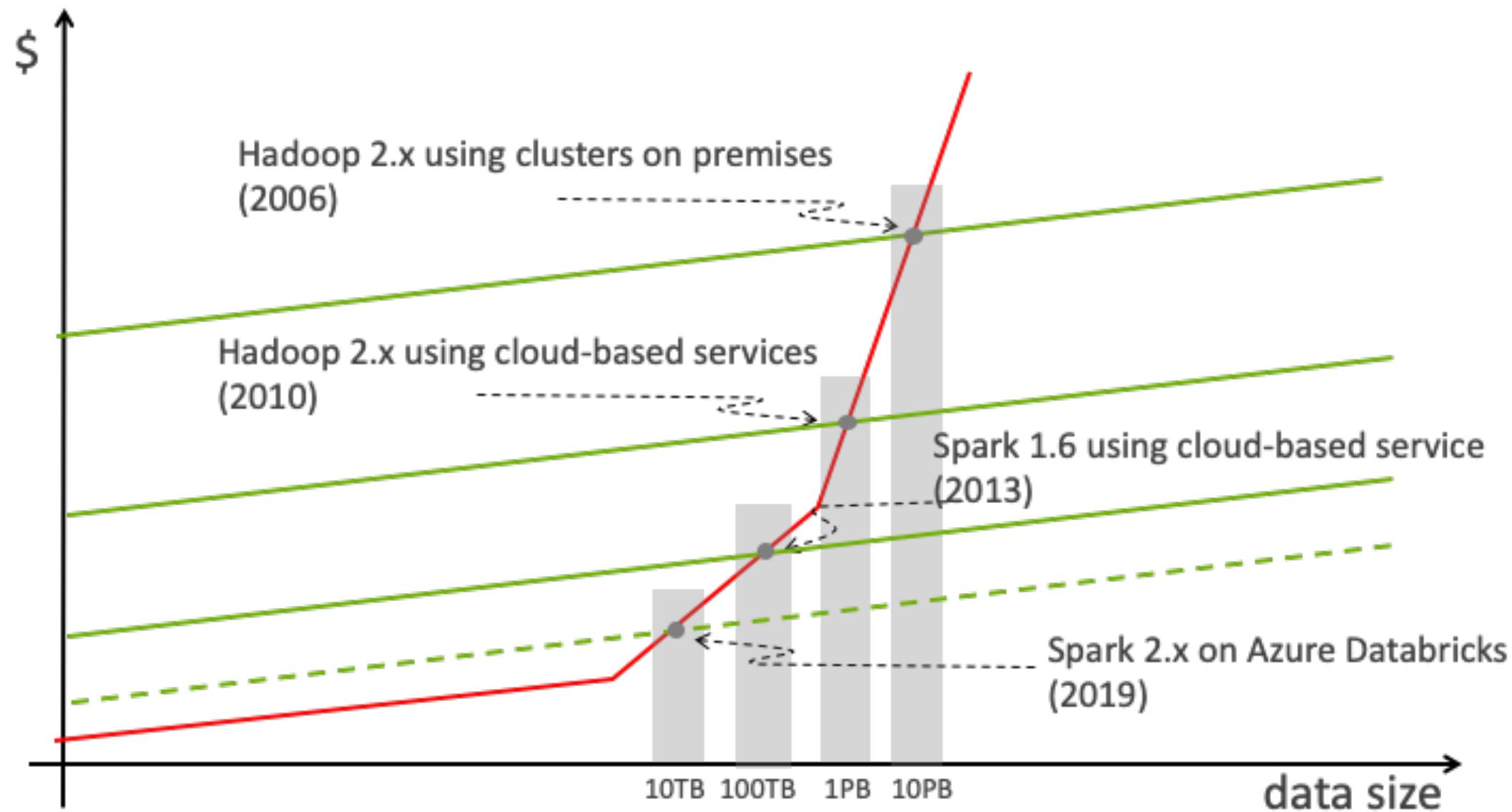
Vertical vs Horizontal Scalability



Vertical vs Horizontal Scalability



Grey Area is Time-Dependent



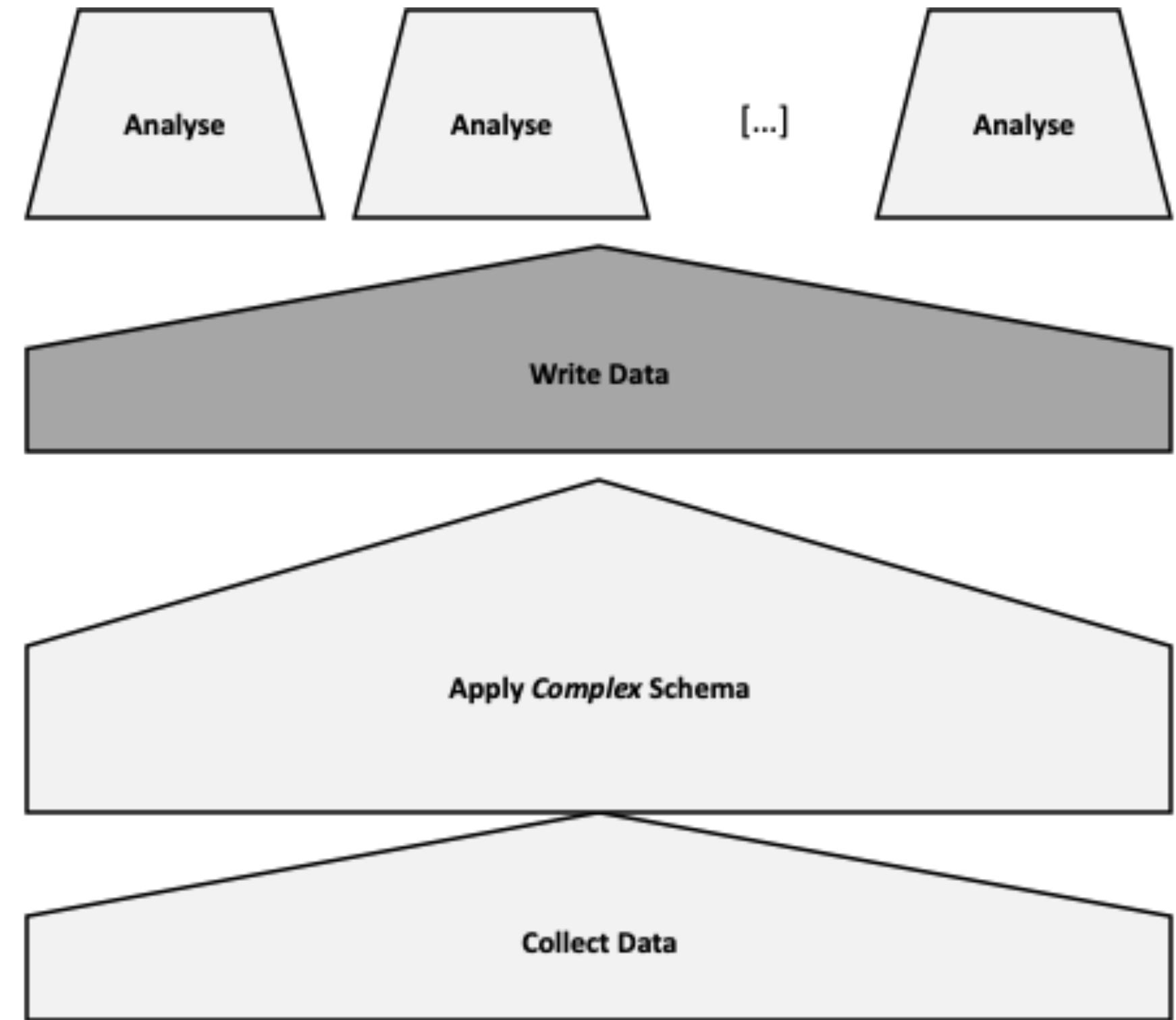
Big Data Storage

- Distributed File Systems, e.g., HDFS
- NoSQL Databases
- NewSQL Databases⁶⁵ e.g., VoltDB
- Distributed Queues, e.g., Pulsar or Kafka

⁶⁵a modern form of relational databases that aim for comparable scalability with NoSQL databases while maintaining the transactional guarantees made by traditional database systems

Traditional Data Modelling Workflow

- Known as Schema on Write
- Focus on the modelling a schema that can accommodate all needs
- Bad impact on those analysis that were not envisioned

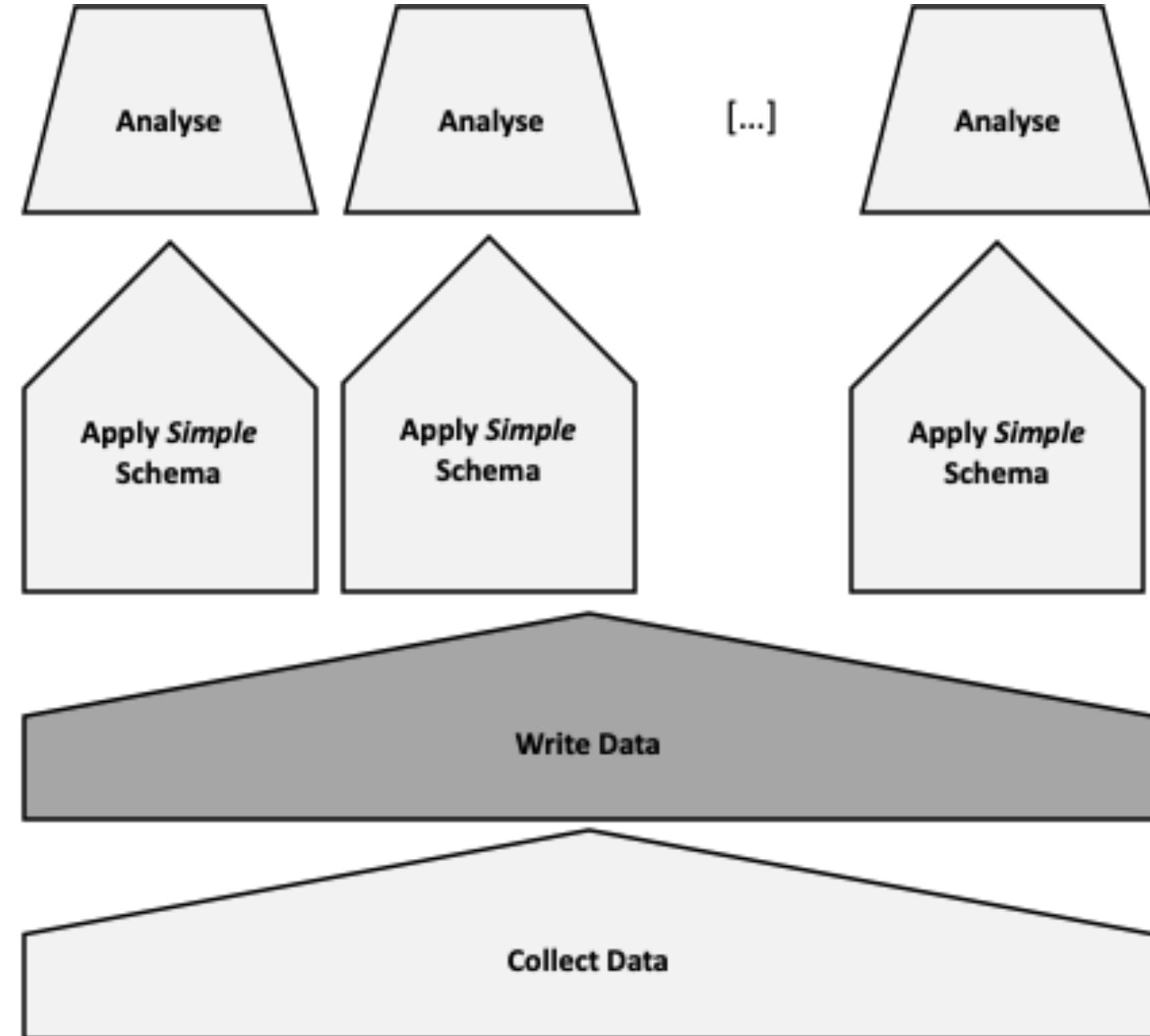


The Traditional RDBMS Wisdom Is (Almost Certainly) All Wrong⁴³

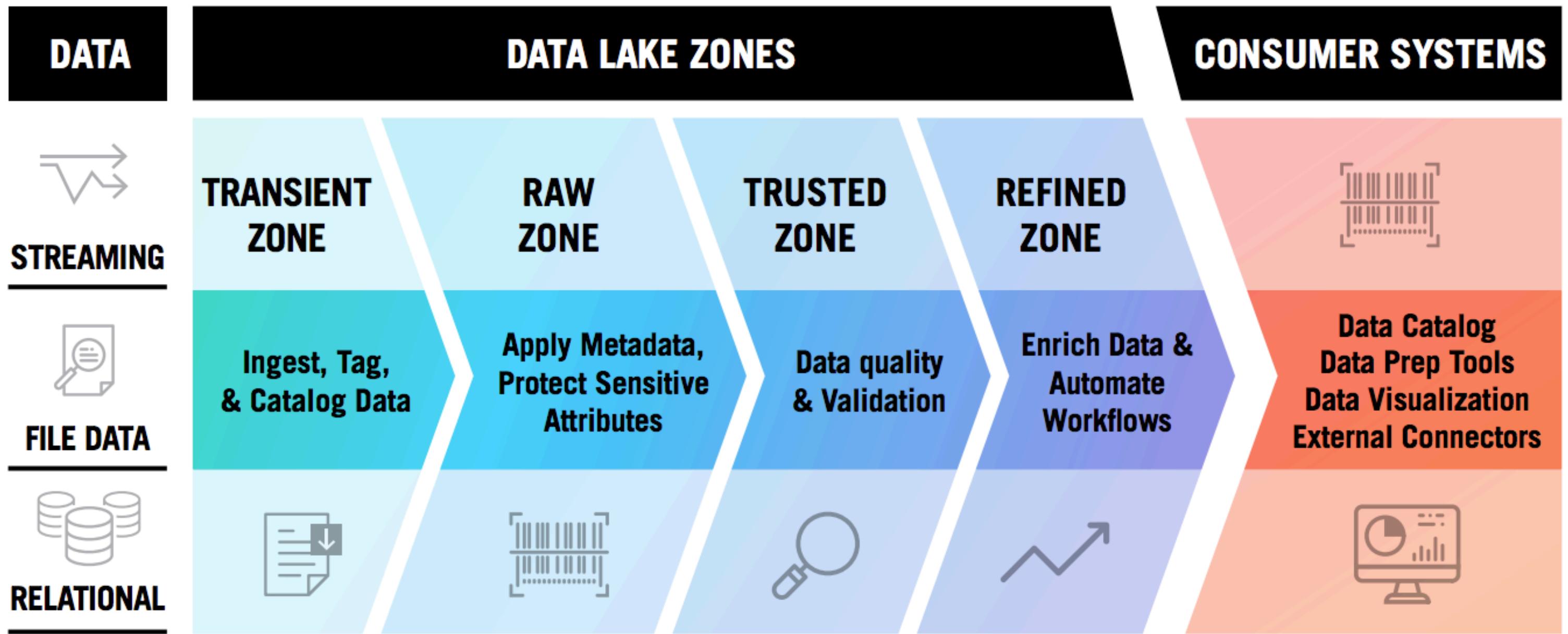
⁴³ Source with slides: [The Traditional RDBMS Wisdom Is \(Almost Certainly\) All Wrong](#), presentation at EPFL, May 2013

Schema on Read

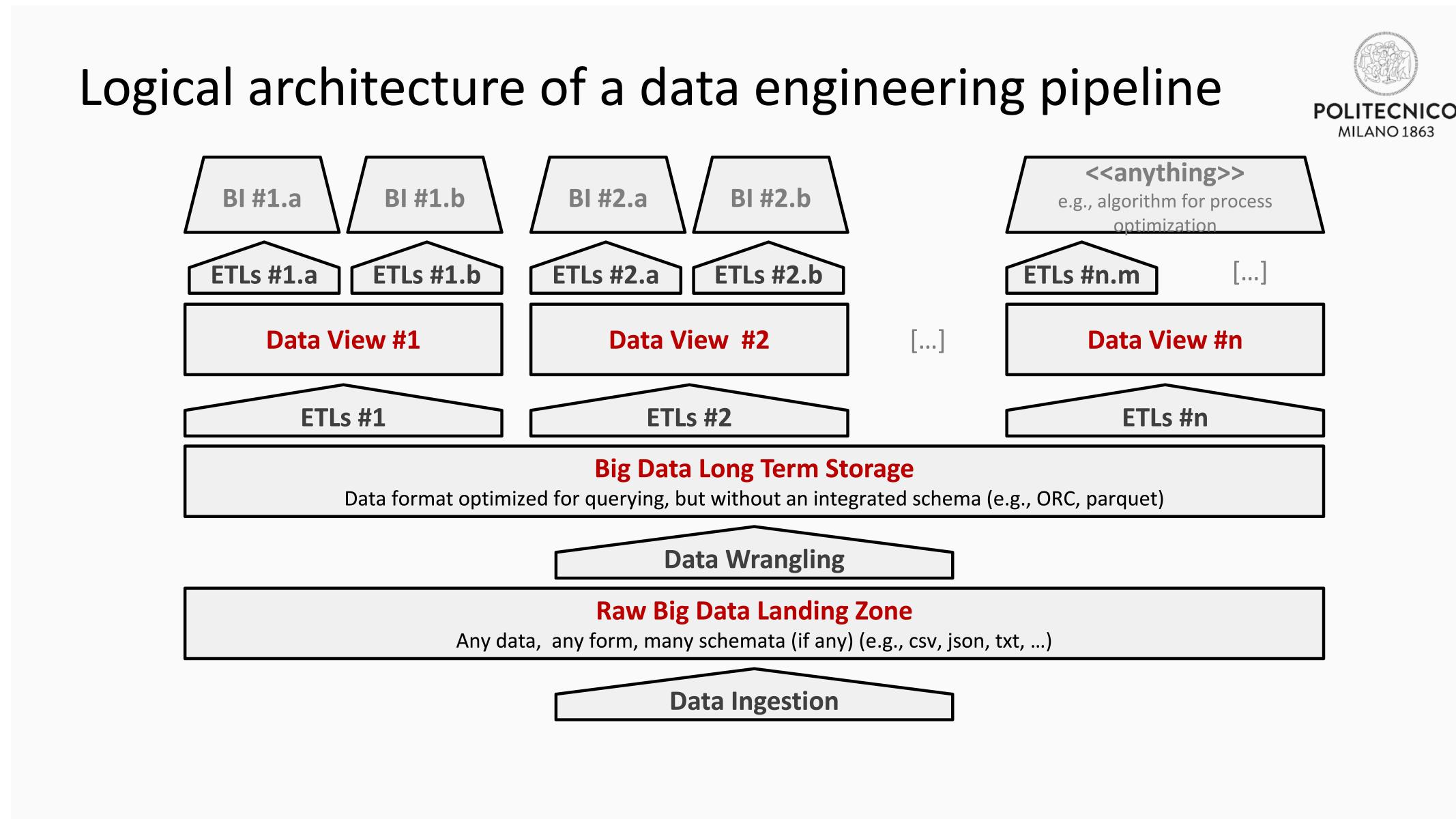
- Load data first, ask question later
- All data are kept, the minimal schema need for an analysis is applied when needed
- New analyses can be introduced in any point in time

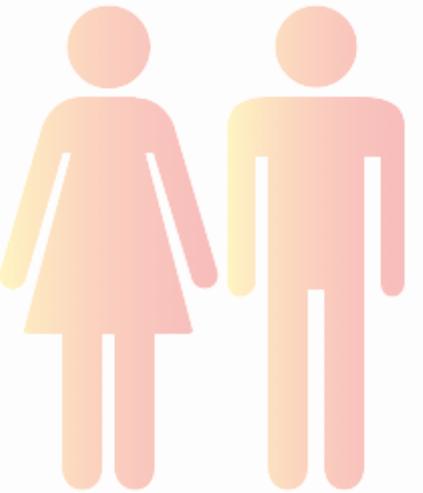


Data Lakes

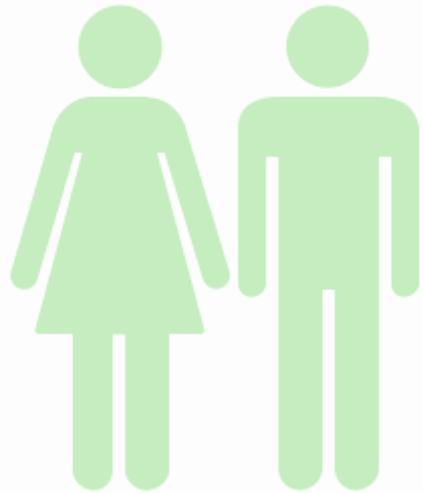


Logical View of Data Pipelines





Data Engineering



Data Science

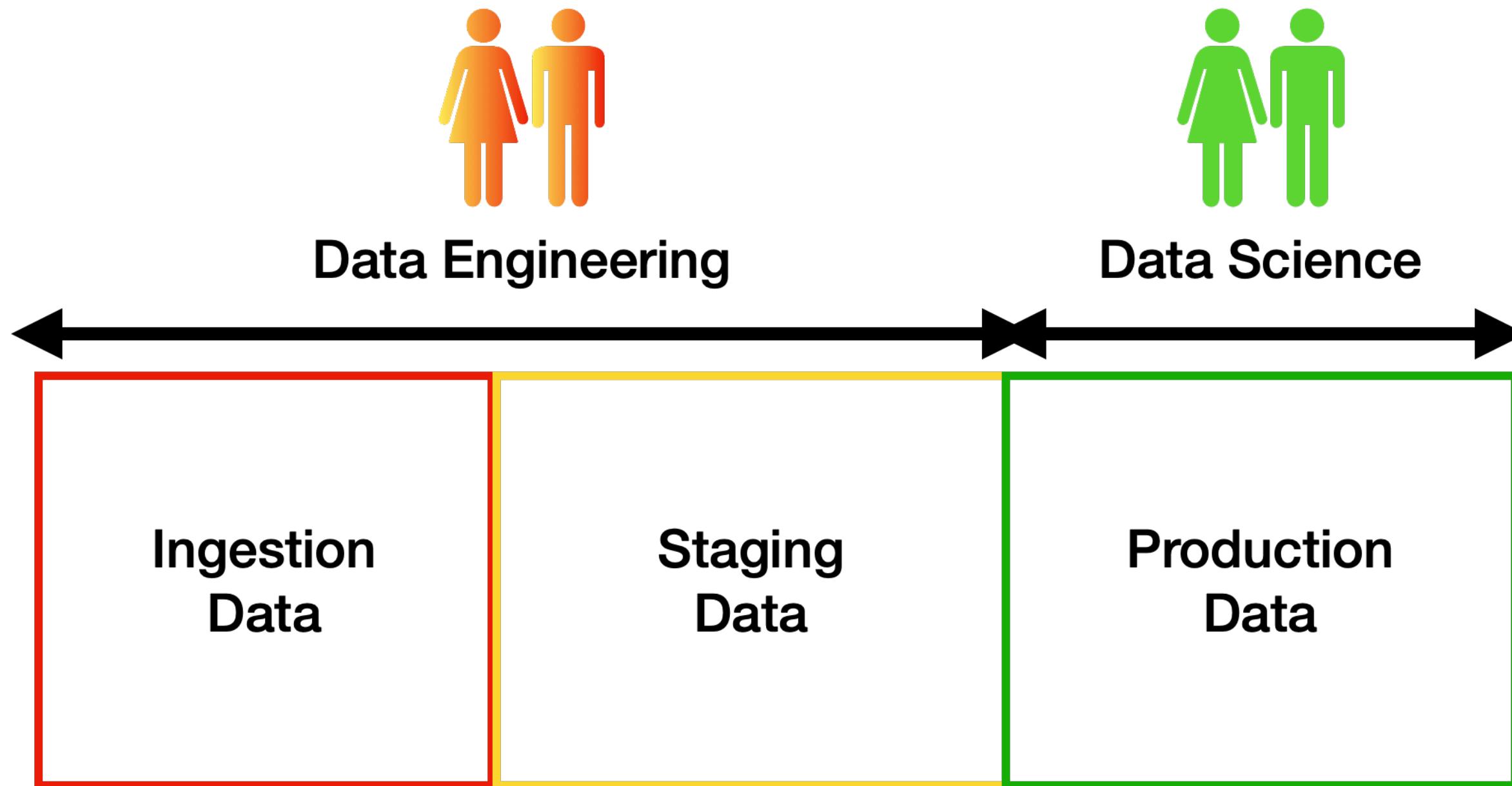
A Simplified view

Ingestion
Data

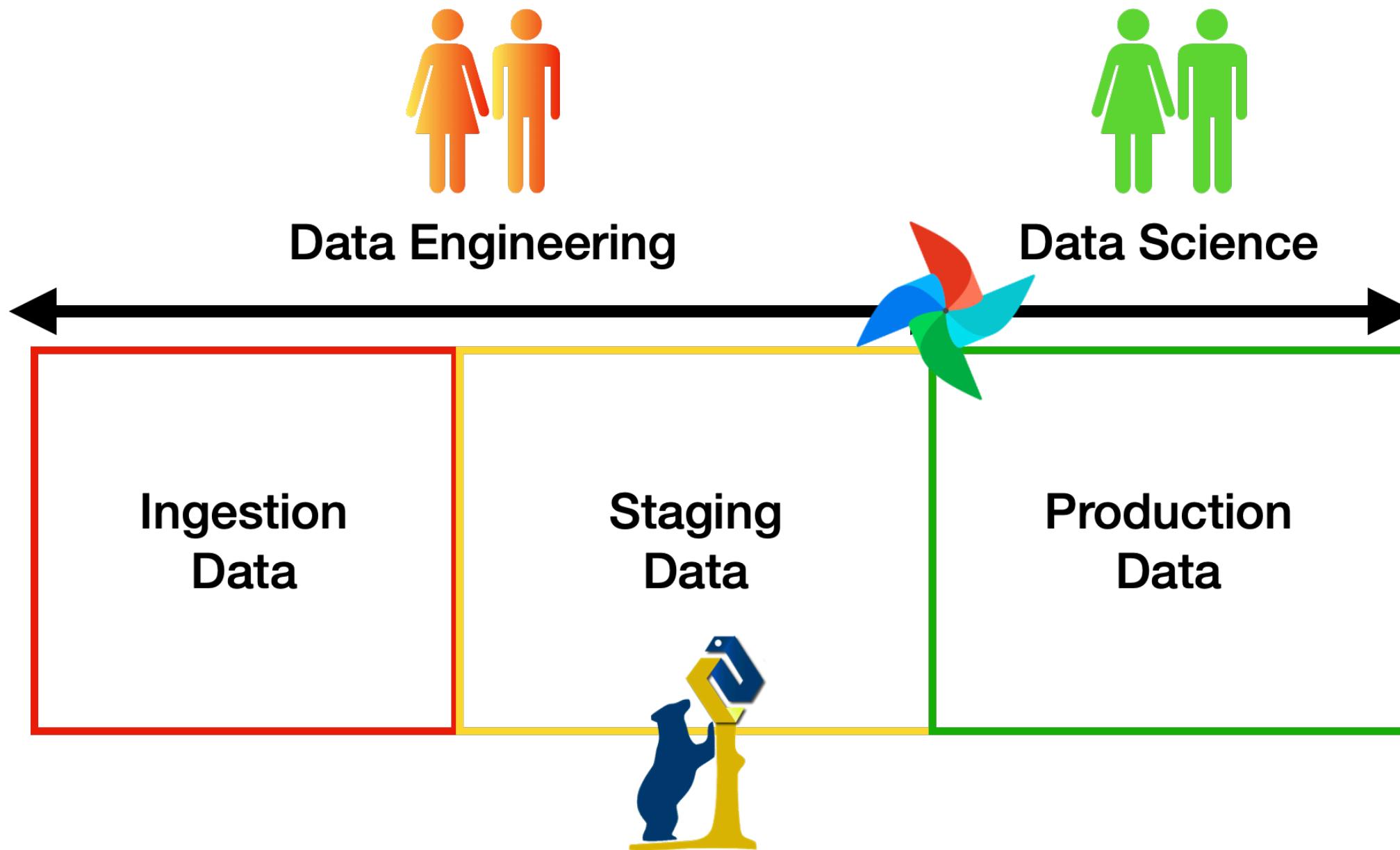
Staging
Data

Production
Data

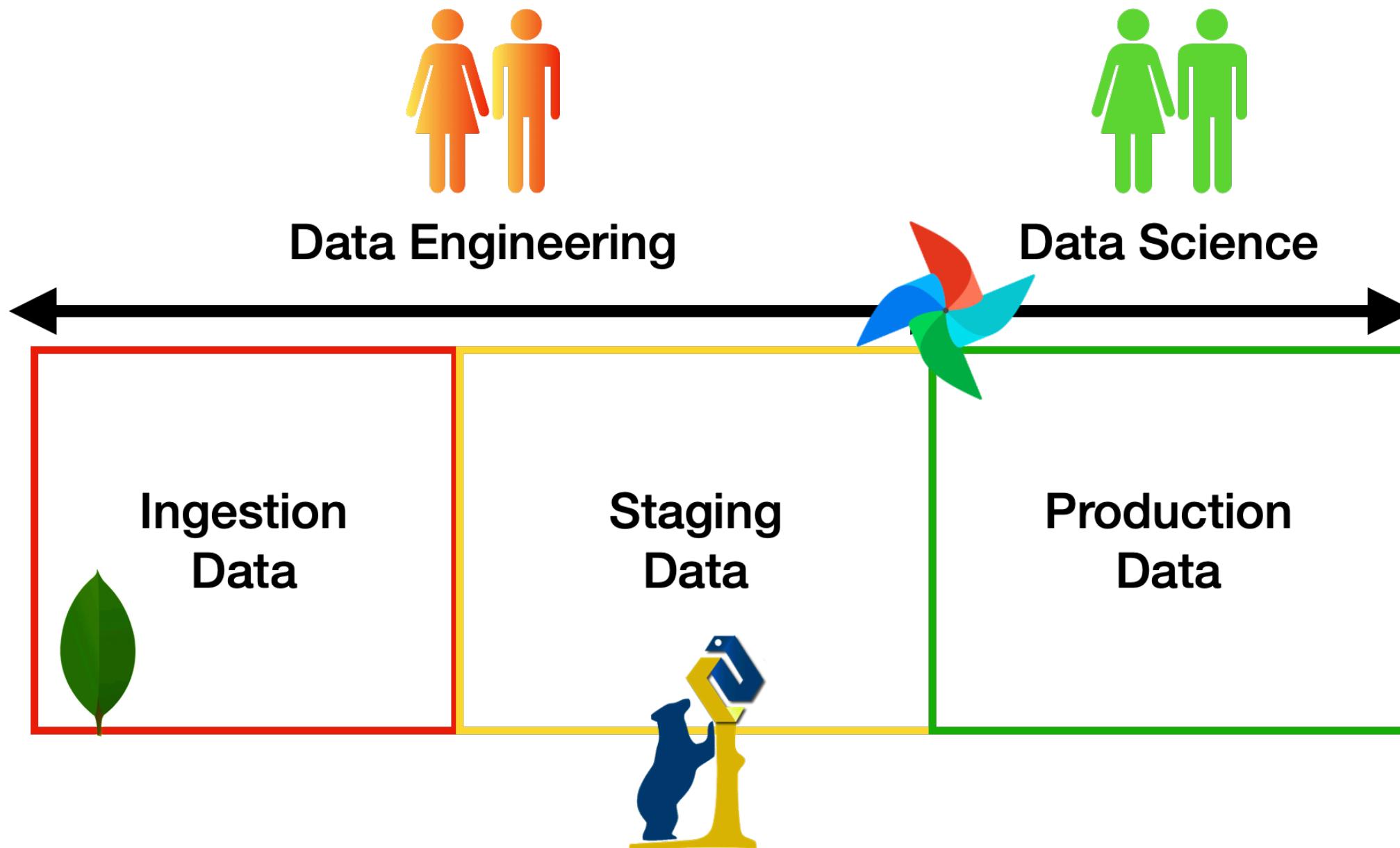
A Simplified view



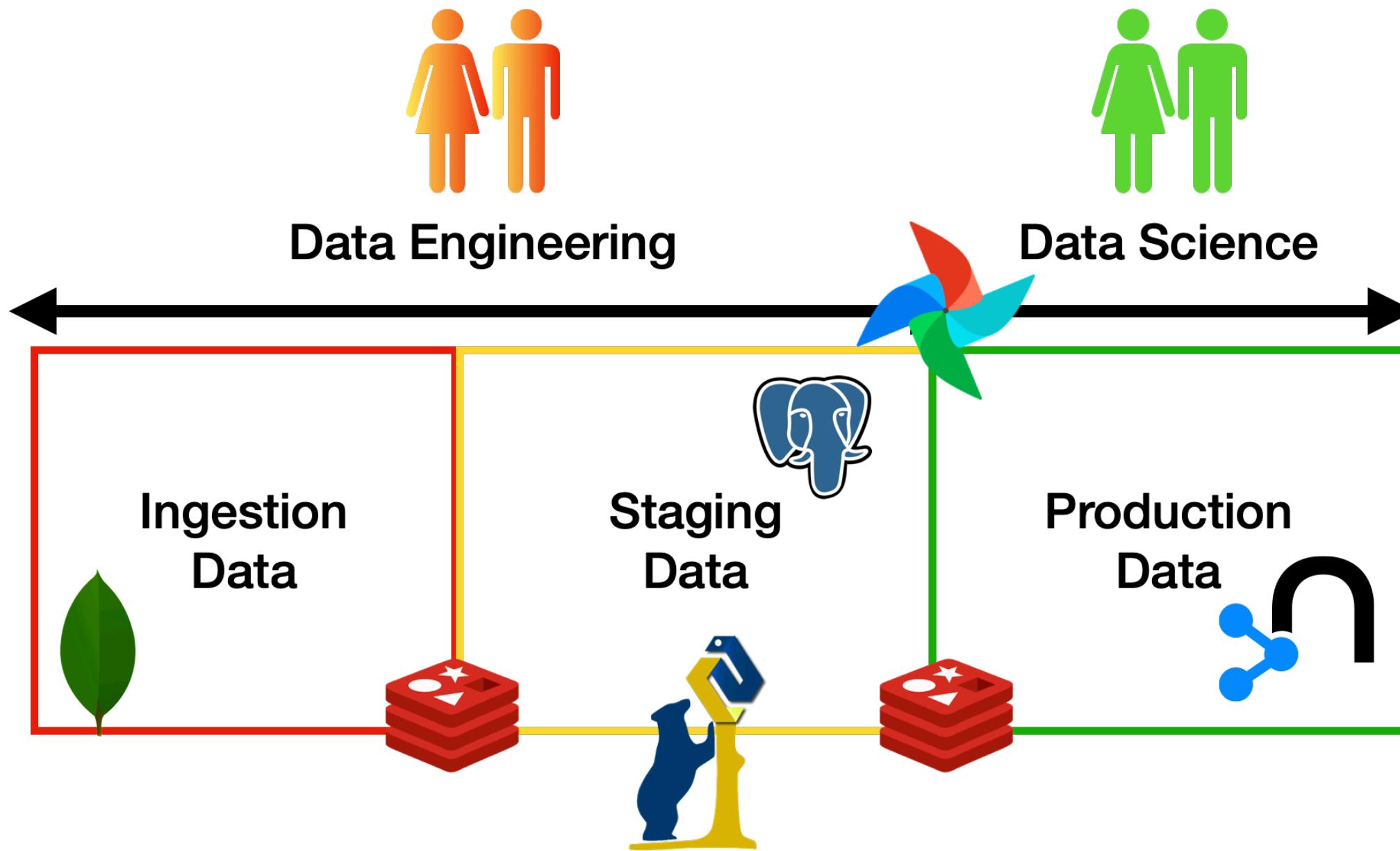
Our Physical View



Our Physical View



Our Physical View



Our Physical View

