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The traditional data processing
iInfrastructures are challenged:

e Electronic trading

* Network monitoring

* Fraud detection

e Social network analysis

e |oT Applications

| HAVE NO
e Smart cities I,IM"A““"S




... Excel At Historical
Descriptive Analysis

What is the average time to failure for the different
brands of turbine in use?
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Which content features are correlated to high impact
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... 9truggling With
Prescriptive Analysis

What is the expected time to failure when that turbi
starts to vibrate as detected in the last 10 minutes?
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Data

Analysis

Descriptive
What Happened?

Diagnostic
Why Did It Happen?

Predictive
What Will Happen?

Prescriptive
What Should | Do?

Human Input

Decision

Decision Support

Decision Automation

Action

Result




So What?

The traditional data processing
infrastructures are challenged:

|
e Electronic trading STHHMS

¢
 Network monitoring { %ﬂ

e Fraud detection
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STBEAMS EVERYWHERE

e Social network analysis

e |oT Applications

e Smart cities



What is a Stream?

 Streams: unbounded partially ordered sequence of data
in form of object-timestamp pairs <o,t>, e.qg.,

e OIS adata item

e tis a natural number
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What is an Event?

 Event: time-based notification of a known fact defined by

* p a key-value payload

e 7,atype
, A Typ e payload: 520 - 565 mm

® type: green
® timestamp: t

e {, atimestamp e duration: 0

e d, an optional duration
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How to process a
stream?



Stream Computing

Continuous Algorithms

Sort out all the colours in the
streams
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Querying Streams

Data Streams Management Systems

How many boxes red color observations W, 15)
there are in the last minute?

1 minute wide window
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Recently a new class of data-intensive appl
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Abstract

In this overview paper we motivate the need for and research issues arising from a new model of
data processing. In this model, data does not take the form of persistent relations, but rather arrives in
muliple, continuous, rapid, time-varying data streams. In addition to reviewing past work relevant to
data stream systems and current projects in the are, the paper explores topics in stream query languages,
new requirements and challenges in query processing, and algorithmic issues

Introduction

and unbounded streams appears 1o yield some fundamentally new research problems

In all of the applications cited above, it is not feasible to simply load the ariving data into a tradi-
tional database management system (DBMS) and operate on it there. Traditional DBMS’s are not designed
for rapid and continuous loading of individual data items, and they do not directly support the continuous
queries [84] that are typical of data stream applications. Furthermore, it is recognized that both approxima-
tion [13] and adaptivity [8] are key ingredients in exccuting queries and performing other processing (c..,
data analysis and mining) over rapid data streams, while traditional DBMS’s focus largely on the opposite

goal of precise answers computed by stable query plans.

In this paper we consider fundamental models and issues in developing a general-purpose Data Stream
such a system at Stanford [82], and we will touch on some

System (DSMS). We

of our own work in this paper. However, we also attempt to provide a general overview of the area, along

with its related and current work. (Any glaring omissions are, naturally, our own fault.)

‘We begin in Section 2 by considering the data stream model and queries over sireams. In this section we

ons has become widely recognized: applications in which
the data is modeled best not as persistent relations but rather s transient data streams. Examples of such
applications include financial applications, nefwork monitoring, security, telecommunications data manage-
ment, web applications, manufacturing, sensor networks, and others. In the data stream model, individual
data items may be relational tuples, e.g., network measurements, call records, web page visits, sensor read-
ings, and so on. However, their continuous arrival in multiple, rapid, time-varying, possibly unpredictable
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ning experiments for online leaming from evolving data streams. MOA includes a collection of
offline and online methods as well as tools for evaluation. In particular, it implements boosting,
bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA
supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analy-
sis, and is released under the GNU GPL license.

Keywords: data streams, classification, ensemble methods, java, machine learning software

1. Introduction

Green computing i the study and practice of using computing resources efficiently. A main ap-
proach to green computing is based on algorithmic efficiency. In the data stream model, data arrive
at high speed, and an algorithm must process them under very strict constraints of space and time.
MOA is an open-source framework for dealing with massive evolving data streams. MOA is
related to WEKA, the Waikato Environment for Knowledge Analysis, which is an award-winning
open-source workbench containing implementations of a wide range of batch machine leaming

Apache Flink™: Stream and Batch Processing in a Single Engine
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Requirement 1 Process an example at a time, and inspect it only once (at most)

Requirement 2 Use a limited amount of memory Abstract

Dot 3 Winsk i frimnn Apache Flink' is an open-source system for processing streaming and baich data. Flink is built on the

philosophy that many classes of data processing applications, including real-time analytics, continu-
ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph
analy; m; can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present
Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a
single execuion model.

1 Introduction
Data-stream proces s exemplified by complex event proc stems) and static (batch) data pro-
cessing (¢.g., as exemplified by MPP databs d Hadoop) considered as two very different
types of applications. They were programmed using different programming models and APIs, and were ex
cuted by different systems (c.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams,
Microsoft Streaminsight, or Streambase versus relational databases or exccution engines for Hadoop, including
Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases,
data sizes, and market, while streaming data analysis mostly served specialized a
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It's a Streaming World! ation

= = It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing.
Reasoning upon Rapidly use cases handle datathat s, n realiy, overtime. stroams of data come
Changlng Information for \.xamp]c from web logs, application logs, sensors, or as changes to application state in databases (transaction

log records). Rather than treating the strea cams, today's setups ignore d timely nature
of data production. Instead, data records are (ofien antificially) batched into static data sets (e.g.. hourly, daily, or
monthly chunks) and then processed in a time-agnostic fashion. Data collection tools, workflow managers, and
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The Vision

The 8 Requirements of Real-Time Stream Processing

Michael Stonebraker
Computer Science and Atrtificial
Intelligence Laboratory, M.1.T., and
StreamBase Systems, Inc.

stonebraker@csail.mit.edu

ABSTRACT

Applications that require real-time processing of high-volume
data steams are pushing the limits of traditional data processing
infrastructures. These stream-based applications include market
feed processing and electronic trading on Wall Street, network
and infrastructure monitoring, fraud detection, and command and
control in military environments. Furthermore, as the “sea
change” caused by cheap micro-sensor technology takes hold, we
expect to see everything of material significance on the planet get
“sensor-tagged” and report its state or location in real time. This
sensorization of the real world will lead to a “green field” of
novel monitoring and control applications with high-volume and

low-latency processing requirements.

Recently, several technologies have emerged—including off-the-
shelf stream processing engines—specifically to address the
challenges of processing high-volume, real-time data without
requiring the use of custom code. At the same time, some existing
software technologies, such as main memory DBMSs and rule
engines, are also being “repurposed” by marketing departments to
address these applications.

In this paper, we outline eight requirements that a system software
should meet to excel at a variety of real-time stream processing
applications. Our goal is to provide high-level guidance to
information technologists so that they will know what to look for
when evaluation alternative stream processing solutions. As such,
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Brown University, and
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Similar requirements are present in monitoring computer
networks for denial of service and other kinds of security attacks.
Real-time fraud detection in diverse areas from financial services
networks to cell phone networks exhibits similar characteristics.
In time, process control and automation of industrial facilities,
ranging from oil refineries to corn flakes factories, will also move
to such “firchose” data volumes and sub-second latency
requirements.

There is a “sea change” arising from the advances in micro-sensor
technologies. Although RFID has gotten the most press recently,
there are a variety of other technologies with various price points,
capabilities, and footprints (e.g., mote [1] and Lojack [2]). Over
time, this sea change will cause everything of material
significance to be sensor-tagged to report its location and/or state
in real time.

Military has been an early driver and adopter of wireless sensor
network technologies. For example, the US Army has been
investigating putting vital-signs monitors on all soldiers. In
addition, there is already a GPS system in many military vehicles,
but it is not connected yet into a closed-loop system. Using this
technology, the army would like to monitor the position of all
vehicles and determine, in real time, if they are off course.

Other sensor-based monitoring applications will come over time
in non-military domains. Tagging will be applied to customers at
amusement parks for ride management and prevention of lost



8 Requirements of Real-
ime Stream Processing

The 8 Requirements of Real-Time Stream Processing

Michael { Rule 3: Handle Ugur CcRule 6: Stan Rule 7: Partition
Rule 1:Keep  Computer Sc Siream DepartnentofC Guarantee Data OSPartnentof ¢ and Scale
the Data Imperfections e Safety and | Applications
‘Moving  (Delayed, Missing ‘ Availability . Automatically
and Out-of-Order ¥ T s

I

,;ﬁ\ﬁ?‘ Data) Rule 4: R Rule 5: A
~Rule 2: Query T s Generate A, Integrate WeN'¥  Rule 8: Process

Y _ using SQL on Tren Predictable ot Stored and =& and Respond
\ - _« Streams oo Outcomes AL Streaming Data P Instantaneously

\ .
A '

. "
¥y S0 4 . e . ¢ L)



Recently a new class of data-intensive appl

Models and Issues in Data Stream Systems *

Brian Babcock ~ Shivnath Babu ~Mayur Datar  Rajeev Motwani  Jennifer Widom

Department of Computer Science

{pabcock, shivnath, datar, rajeev, widon}écs. stanford.edu

Abstract

In this overview paper we motivate the need for and research issues arising from a new model of
data processing. In this model, data does not take the form of persistent relations, but rather arrives in
muliple, continuous, rapid, time-varying data streams. In addition to reviewing past work relevant to
data stream systems and current projects in the are, the paper explores topics in stream query languages,
new requirements and challenges in query processing, and algorithmic issues

Introduction

and unbounded streams appears 1o yield some fundamentally new research problems

In all of the applications cited above, it is not feasible to simply load the ariving data into a tradi-
tional database management system (DBMS) and operate on it there. Traditional DBMS’s are not designed
for rapid and continuous loading of individual data items, and they do not directly support the continuous
queries [84] that are typical of data stream applications. Furthermore, it is recognized that both approxima-
tion [13] and adaptivity [8] are key ingredients in exccuting queries and performing other processing (c..,
data analysis and mining) over rapid data streams, while traditional DBMS’s focus largely on the opposite

goal of precise answers computed by stable query plans.

In this paper we consider fundamental models and issues in developing a general-purpose Data Stream
such a system at Stanford [82], and we will touch on some

System (DSMS). We

of our own work in this paper. However, we also attempt to provide a general overview of the area, along

with its related and current work. (Any glaring omissions are, naturally, our own fault.)

‘We begin in Section 2 by considering the data stream model and queries over sireams. In this section we

ons has become widely recognized: applications in which
the data is modeled best not as persistent relations but rather s transient data streams. Examples of such
applications include financial applications, nefwork monitoring, security, telecommunications data manage-
ment, web applications, manufacturing, sensor networks, and others. In the data stream model, individual
data items may be relational tuples, e.g., network measurements, call records, web page visits, sensor read-
ings, and so on. However, their continuous arrival in multiple, rapid, time-varying, possibly unpredictable
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ning experiments for online leaming from evolving data streams. MOA includes a collection of
offline and online methods as well as tools for evaluation. In particular, it implements boosting,
bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA
supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analy-
sis, and is released under the GNU GPL license.
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1. Introduction

Green computing i the study and practice of using computing resources efficiently. A main ap-
proach to green computing is based on algorithmic efficiency. In the data stream model, data arrive
at high speed, and an algorithm must process them under very strict constraints of space and time.
MOA is an open-source framework for dealing with massive evolving data streams. MOA is
related to WEKA, the Waikato Environment for Knowledge Analysis, which is an award-winning
open-source workbench containing implementations of a wide range of batch machine leaming

Apache Flink™: Stream and Batch Processing in a Single Engine
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mm::::u stream environment has different requirements from the traditional batch learning setting. IKTH & SICS Sweden tdata Artisans “TU Berlin & DFKI

‘The most significant are the following: haridi@kth s fist

Requirement 1 Process an example at a time, and inspect it only once (at most)

Requirement 2 Use a limited amount of memory Abstract

Dot 3 Winsk i frimnn Apache Flink' is an open-source system for processing streaming and baich data. Flink is built on the

philosophy that many classes of data processing applications, including real-time analytics, continu-
ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph
analy; m; can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present
Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a
single execuion model.

1 Introduction
Data-stream proces s exemplified by complex event proc stems) and static (batch) data pro-
cessing (¢.g., as exemplified by MPP databs d Hadoop) considered as two very different
types of applications. They were programmed using different programming models and APIs, and were ex
cuted by different systems (c.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams,
Microsoft Streaminsight, or Streambase versus relational databases or exccution engines for Hadoop, including
Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases,
data sizes, and market, while streaming data analysis mostly served specialized a

. -
It's a Streaming World! ation

= = It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing.
Reasoning upon Rapidly use cases handle datathat s, n realiy, overtime. stroams of data come
Changlng Information for \.xamp]c from web logs, application logs, sensors, or as changes to application state in databases (transaction

log records). Rather than treating the strea cams, today's setups ignore d timely nature
of data production. Instead, data records are (ofien antificially) batched into static data sets (e.g.. hourly, daily, or
monthly chunks) and then processed in a time-agnostic fashion. Data collection tools, workflow managers, and
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Abstract CQL, a continuous query language, is supported
by the STREAM prototype data stream management sys-
tem (DSMS) at Stanford. CQL is an expressive SQL-based
declarative language for registering continuous queries
against streams and stored relations. We begin by presenting
an abstract semantics that relies only on “black-box” map-
pings among streams and relations. From these mappings
we define a precise and general interpretation for continu-
ous queries. CQL is an instantiation of our abstract seman-
tics using SQL to map from relations to relations, window
specifications derived from SQL-99 to map from streams
to relations, and three new operators to map from relations
to streams. Most of the CQL language is operational in
the STREAM system. We present the structure of CQL’s
query execution plans as well as details of the most impor-
tant components: operators, interoperator queues, Synopses,
and sharing of components among multiple operators and
queries. Examples throughout the paper are drawn from the
Linear Road benchmark recently proposed for DSMSs. We
also curate a public repository of data stream applications
that includes a wide variety of queries expressed in CQL.
The relative ease of capturing these applications in CQL is

[2, 19, 20, 23, 28, 32]. However, these queries tend to be
simple and primarily for illustration — a precise language
semantics, particularly for more complex queries, often is
left unclear. Furthermore, very little has been published to
date covering execution details of general-purpose continu-
ous queries. In this paper we present the CQL language and
execution engine for general-purpose continuous queries
over streams and stored relations. CQL (for continuous
query language) is an instantiation of a precise abstract
continuous semantics also presented in this paper, and
CQL is implemented in the STREAM prototype data stream
management system (DSMS) at Stanford. !

It may appear initially that defining a continuous query
language over (relational) streams is not difficult: take a re-
lational query language, replace references to relations with
references to streams, register the query with the stream pro-
cessor, and wait for answers to arrive. For simple monotonic
queries over complete stream histories, indeed this approach
is nearly sufficient. However, as queries get more complex
— when we add aggregation, subqueries, windowing con-
structs, relations mixed with streams, etc. — the situation be-
comes much murkier. Consider the following simple query:



Stream Computing

Sort out all the colours in the
streams
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Continuous Querying

How many boxes red color observations W, 15)
there are in the last minute?

1 minute wide window
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CQL in 3 Slides

A Stream S is a possibly infinite multi-set of elements <s,t>

where s is a tuple belonging to the schema of S and tis a
timestamp.

Relation R is a set of tuples (d, d,, ..., d.), where each
element d is a member of D, a data domain?.

I'a Data Domain refers to all the values which a data element may contain.


https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Data_domain
https://en.wikipedia.org/wiki/Data_element
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CQL in 8 4 Slides

A Stream S is a possibly infinite multi-set of elements <s,t>
where s is a tuple belonging to the schema of S and tis a
timestamp.

element-d-isamemberof D adata domain™

I'a Data Domain refers to all the values which a data element may contain.


https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Data_domain
https://en.wikipedia.org/wiki/Data_element
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A Stream S is a possibly infinite multi-set of elements <s,t>
where s is a tuple belonging to the schema of S and tis a
timestamp.

Relation R is a mapping from each time instant in T to a
finite but unbounded bag of tuples belonging to the
schema of R.

I'a Data Domain refers to all the values which a data element may contain.
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A Stream S is a possibly infinite multi-set of elements <s,t>
where s is a tuple belonging to the schema of S and tis a
timestamp.

Relation R is a mapping from each time instant in T to a
finite but unbounded bag of tuples belonging to the
schema of R.

I'a Data Domain refers to all the values which a data element may contain.
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CQL in B 6 Slides

Stream-to-Relation Operators:

e Sliding Window:
FROM S [ RANGE 5 Minutes]

e Parametric Sliding Windows:
FROM S [ RANGE 5 Minutes Slide 1 Min]

e Partitioned Windows:
FROM S [PARTITIONED BY Ai1..An ROW m]

I'a Data Domain refers to all the values which a data element may contain.
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Abstract COL, a continuous query language, is supported

by the STREAM prototype data stream management sys-

tem (DSMS) at Stanford. CQL is an expressive SQL-based

declarative language for registering continuous queries
 stored relat

2, 19, 20, 23, 28, 32]. However, these queries tend to be
simple and primarily for illustrtion — a precise language
semantics, particularly for more complex queries, often is
Ieft unclear. Furthermore, very litle has been published to

Ve begin by presenting
an abstract semantics that relies only on “black-box” map-
pings among streams and relations. From these mappings
we define a precise and general interpretation for continu-
ous queries. CQL is an instantiation of our abstract seman-
tics using SQL to map from relations to relations, window
specifications derived from SQL-99 to map from streams
0 relations, and three new operators to map from relations

s Most of the QL language is operational in
the STREAM system. We present the structure of CQL'S
query exccution plans as well as details of the most impor-
{ant components: operalors, ineroperaor queues, synopses,
and sharing of components among multiple operators and
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date covering detais of general-purpose continu-
ous queries. In this paper we present the CQL language and
exccution engine for general-purpose confinuous queries

e s semantics also presented in this paper, and
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It may appear initially that defining a continuous query
language over (relational) streams is not difficult: take a re-
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Relation-to-Stream Operators:
* Rstream: streams out all data in the last step

* |stream: streams out data in the last step that wasn’t
on the previous step, I.e. streams out what is new

* Dstream: streams out data in the previous step that
Isn’t in the last step, I.e. streams out what is old

I'a Data Domain refers to all the values which a data element may contain.


https://en.wikipedia.org/wiki/Data_element

Recently a new class of data-intensive appl
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Abstract

In this overview paper we motivate the need for and research issues arising from a new model of
data processing. In this model, data does not take the form of persistent relations, but rather arrives in
muliple, continuous, rapid, time-varying data streams. In addition to reviewing past work relevant to
data stream systems and current projects in the are, the paper explores topics in stream query languages,
new requirements and challenges in query processing, and algorithmic issues

Introduction

and unbounded streams appears 1o yield some fundamentally new research problems

In all of the applications cited above, it is not feasible to simply load the ariving data into a tradi-
tional database management system (DBMS) and operate on it there. Traditional DBMS’s are not designed
for rapid and continuous loading of individual data items, and they do not directly support the continuous
queries [84] that are typical of data stream applications. Furthermore, it is recognized that both approxima-
tion [13] and adaptivity [8] are key ingredients in exccuting queries and performing other processing (c..,
data analysis and mining) over rapid data streams, while traditional DBMS’s focus largely on the opposite

goal of precise answers computed by stable query plans.

In this paper we consider fundamental models and issues in developing a general-purpose Data Stream
such a system at Stanford [82], and we will touch on some

System (DSMS). We

of our own work in this paper. However, we also attempt to provide a general overview of the area, along

with its related and current work. (Any glaring omissions are, naturally, our own fault.)

‘We begin in Section 2 by considering the data stream model and queries over sireams. In this section we

ons has become widely recognized: applications in which
the data is modeled best not as persistent relations but rather s transient data streams. Examples of such
applications include financial applications, nefwork monitoring, security, telecommunications data manage-
ment, web applications, manufacturing, sensor networks, and others. In the data stream model, individual
data items may be relational tuples, e.g., network measurements, call records, web page visits, sensor read-
ings, and so on. However, their continuous arrival in multiple, rapid, time-varying, possibly unpredictable

e VLDB Journal 20061502 121-142
D1 10T ane o147

Arvind Arasu - Shivnath Babu - Jennifer Widom

and query execution

g Vg 2005

Abstract COL o continuous query languase, i supporied

he STREAM protorype data siram management sys
e (DSMS) at Sford. CQL i an expresive SQL-bused
declarative language for egisering  continuous. queries

O @00

The CQL continuous query language: semantic foundations

v one 2008 Acpio 2 Novmber 2008 bl oln: 2 oy 2005

321, However, these queries tend to be
simple and pimarily for lstrion -  pecise Lguage
Semantics, paricalaty for more complex queies, ofen

left unclear. Furthermore, very ik has been published to

an abstract semanies that elis only on “black bo

ous queic. I this puper we present the COL Hngusge and

Continuous semantcs lso prescnted in his paer
COL i implemented i the STREAM prootype dsa iram

il 5 deall of th o e

10 may appear inially that defining 3 coninuous query
Inguage over (reltionl)strams i ot difficul ake e
Iatonal query language, eplce references o elations with

and s of componets amon mlie operon nd

cesso,and wat foe answers 1o aive. Forsimple monotonic

querien oy

Linear Road benchmrk recently popose

ey e, Howevr, i st e ol
when we akd agarcgaion. ubquercs, windowing <on.
s, relaons mnnl i e e - e st -

The 8 Requirements of Real-Time Stream Processing

Michael Stonebraker

Ugur Getintemel

Stan Zdenik

noncs Lavorsioy 1. X r and

par put
Brown Universty, and
. Inc.

mitedy

br

ABS

TRACT
Applcations that require reaktime procesing of highvolume
e lmits of tradiional dta processing

‘militry cnvironments. Futhermore, a5 the
by Cheap micr-sensor tchwology tkes had, we
10 se everyhing of mateia significance on the planc et

™ and report s st or locatio inrel e

sensoizaion of the real workd wil lead 1o 8 “green il
1 spplications with bigh-volume snd

rposed” by marketing depariments
e e pplaions.

I his paper, we nline cight reqiement hat a system software

‘when evaluation stemaive siream processing solutans. As such,

Similar_reqirements

and query execution

0L continuous qu

em (DSMS)at 1L s an cxpeesive

Languase, s supponed
by e STRENN e ol s g >

du m AR PAPER

Arvind Arasu - Shivaath Babu - Jeanifer Widom

The CQL continuous query language: semantic foundations
iti

he 1 104 At 2 e 04 e ol 23 b 305

19,20,25, 25, 32, Howee, e s ot
e langusge
i, ofen

L

i gl ging o s A s ecoers v s s b pblad 5

et + i and
ous qeries. CQL is an ns

z
4

s semanics el oy on "Mk ox” mp- o g
pings mang srcams and reltons. From these mappings
o teprtcion fo o ove st s v elaoms OQL (o conipmrns

i poper we preset the COL anguage and
rion oo o seeri ot oo g

Seman. query languase) i n insan
‘continsous scmantcs also presnted in this paper, and

p from sucams  CQL s mplmented inthe STREAM protoype data siream

the STREAM sysem. We pr

amusement parks for

1o Susams. Mos of the COL anguage 1 opertionl n
o th sircture of QL' langs

T4 may appea initally ht defining 3 continuous query
unge ovr (rlatonal) sireams i ¢ ificult: ke a e

qcy ascaion plas s wel a deal of th st kgoe. latiaaa quey angaag,replac ereces o pelations wih

and shaing o

Symopecs
“maliple operons and

- aiier th query

Einear Rod benchaaek ecenly proposed or DMSS. W

5 eary sfficient. However, 5 queris g mave complex

s coate a public reposkory of dats srcam applicaions - when we add ageregaon, subqucres, windowing con
o s & wide vy o ks cxresed n COL st rrl»lulhm“«luuh~ln:am~ch, e station b

Apache Samza

Timeline

Precision not Recall

Martin Kleppmann

The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing

2015 IEEE First Intenational Ct Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Erlc Schmldl Sam Whittle

Dynamically Scaling

< {takidau, robertwb, chambers, chernyak, rfernand,
Of N relax, sgmc, millsd, fip, cloude, samuelw}@google.com

ABSTRACT INTRODUCTION

Unbounded, wnordered, globabscale datasee are incess- Modern data processing is a complex and exciting fild.
Journal of Machine Leaming Rescarch 11 2010) 1601-1604 Submited 11109 Pubihd 410 Jan Sipke van der Veen'2, Bram van di o-dny business (5. Web logs, mobile  From the scale enabled by MapReduce [16] and its successors

(e.& Hadoop [4], Pig [18], Hive (2], Spark [33]), to th
£ work o stecamming witia the SQL, conmanity (o

query systems [1, 14, 15], windowing ta streams [24]
time domains [28], semantic models 9]), to the more recent
forays in low-latency processing such as Spark Streaming
MillWheel, and Storm [5], modern consumers of data
power in shaping and tam-

nsor networks). AL the same time,
University of consumers of thse datasets v evolved sopisticated -

bram.vand

{jan_sipke.vanderveer

hunger for aster answers. Meanwhile, practcality dictates
e caeve aly opimie dlngll s of o |
wield remarkable amounts of

MOA: Massive Online Analysis

Absrac—Streen proceming platorma alew agplen
i ncoming daiaconinuousy oxd
b, ranging rom mooring

e of these caps rectocs,aieny,and cost for thee ypesof input. &
. sult, dat eft with the ',,.a.,dm ing maseive.scale disondor nto organized strctures with for
Albert Bifet ABIFET@CS. WAIKATO.AC.NZ ction. It s difficult to ,,,.d.ﬂ how ,.......u.,..,,u.( o b 1o recomeile T tencions Betwoen theas s mingly ~ greater value. Yet, existing models and systems still fall
Geoff Holmes GEOFF@CS.WAIKATO.AC.NZ are needed for these strea ‘platforms, competing propositions, often resulting in disparate ymp.& short in a number of common use cases.
Richard Kirkby RKIRKBY @CS.WAIKATO.AC.NZ ;“":"";"'r': ;“b‘h‘z ‘_':‘";:'IP::"':::': "‘:ﬂ;::)."n': itations and systems. Consider an initial example: a streaming video pmm[u
hard Pfahringer per pache § [ wants to monetize their content by displaying video ads an

‘We propose that a fundamental shift of approach is nec-

essary to deal with these evolved requirements in modern
ing. We as a field must stop try;

bounded dnmls into finit

BERNHARD@CS. WAIKATO.AC.NZ developers to build processing applications that u

Department of Computer Science poting respures of al macioes itin an ciablh
Z e of the varying proce

b ptorm Shold be 4 tomaticaly o

5 e ot the curen Sorm pio tually becom

provide this describe the assi Inpll n lhm we wi

i v for the st of erising watched

The platform supports online and offine views for content

and ads. The video provider wants to know how much o bil

il

ave  the videos and ads. In addition, they want to cmncml) run

scen all of our data, only that new data wil arrive, old d offine expeiments overlarge svaths of histrial d

e i prober Adveriocs/ contemt providers v, to know bow ofen
Jod abstractions that allow the and for how long thee videosaee being atchec, with wiich

tiioner the cheie ofappropriate tradeofs long the ates of content/ads, and by which demogr oups, They also

Hamilton, New Zealand

Editor:

ikio Braun

‘queues and databases. By
information, the tool decides whether extra servers

Abstract

the writes of records to a

rocessing jobs are long-
dcesses that continuously
le or more event streams,
ime application logic on
producing derived output
potentially writing output

o Sides of the Same C

Guozhang Wang
Confluent Inc.
Palo Alto, USA
guozhang@confluent.io
Johann-Christoph Freyta
Humboldt-Universitiit zu Berlin

Berlin, Germany
freytag@informatik. hu-berlin.d

KEYWORDS

Stream Processing, Processing Model, Semar

ACM Reference Format:
Mt ). e, Gosahang Wi, Matis e

Con e e Wrkho on et s
ha setting Ex-  and Anal £ 18), Rio d

ACM, New York, NY, U sl

eglec handle
them by means of data buffering and reordering techniques, 32421

thereby compromising processing latency.

In this paper, we introduce the Dual Strearming Model
o reason about physical and logicalorder in dat stream

1 INTRODUCTION
Stream processing has emerged as  paradi
real-time app It build val

o enabl

results and streams. As such, it provides anatural way to cope
the physical and logical order

with inconsistencies between

processing of large-scale data in a continuoy
As such, the stream processing paradigm tu

ofstrcaming dat n a continuous manner,without explict  paticulaly suited 1 suppert the mplemer

We further nesslogic in Tt provides
of correctnes,ltency, case study  large sys “microservices, trough
based on Apache Kafka i - ge-passing [19]

for implementing d
ning experiments for online leaming from evolving data streams. MOA includes a collection of
offline and online methods as well as tools for evaluation. In particular, it implements boosting,
bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA
supports bi-directional interaction with WEKA, the Waikato Environment for Knowledge Analy-
sis, and is released under the GNU GPL license.
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1. Introduction

Green computing i the study and practice of using computing resources efficiently. A main ap-
proach to green computing is based on algorithmic efficiency. In the data stream model, data arrive
at high speed, and an algorithm must process them under very strict constraints of space and time.
MOA is an open-source framework for dealing with massive evolving data streams. MOA is
related to WEKA, the Waikato Environment for Knowledge Analysis, which is an award-winning
open-source workbench containing implementations of a wide range of batch machine leaming
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Requirement 1 Process an example at a time, and inspect it only once (at most)

Requirement 2 Use a limited amount of memory Abstract

Dot 3 Winsk i frimnn Apache Flink' is an open-source system for processing streaming and baich data. Flink is built on the

philosophy that many classes of data processing applications, including real-time analytics, continu-
ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph
analy; m; can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present
Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a
single execuion model.

1 Introduction
Data-stream proces s exemplified by complex event proc stems) and static (batch) data pro-
cessing (¢.g., as exemplified by MPP databs d Hadoop) considered as two very different
types of applications. They were programmed using different programming models and APIs, and were ex
cuted by different systems (c.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams,
Microsoft Streaminsight, or Streambase versus relational databases or exccution engines for Hadoop, including
Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases,
data sizes, and market, while streaming data analysis mostly served specialized a

. -
It's a Streaming World! ation

= = It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing.
Reasoning upon Rapidly use cases handle datathat s, n realiy, overtime. stroams of data come
Changlng Information for \.xamp]c from web logs, application logs, sensors, or as changes to application state in databases (transaction

log records). Rather than treating the strea cams, today's setups ignore d timely nature
of data production. Instead, data records are (ofien antificially) batched into static data sets (e.g.. hourly, daily, or
monthly chunks) and then processed in a time-agnostic fashion. Data collection tools, workflow managers, and
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ning experiments for online leaming from evolving data streams. MOA includes a collection of
offline and online methods as well as tools for evaluation. In particular, it implements boosting,
bagging, and Hoeffding Trees, all with and without Naive Bayes classifiers at the leaves. MOA
supports bi-dircctional interaction with WEKA, the Waikato Environment for Knowledge Analy-
sis, and is released under the GNU GPL license.
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1. Introduction

Green computing i the study and practice of using computing resources efficiently. A main ap-
proach to green computing is based on algorithmic efficiency. In the data stream model, data arrive
at high speed, and an algorithm must process them under very strict constraints of space and time.

MOA is an open-source framework for dealing with massive evolving data streams. MOA is
related to WEKA, the Waikato Environment for Knowledge Analysis, which is an award-winning
open-source workbench containing implementations of a wide range of batch machine leaming
methods.

A data stream environment has different requirements from the traditional batch learning setting
‘The most significant are the following:

Requirement 1 Proce:

an example at a time, and inspect it only once (at most)
Requirement 2 Use a limited amount of memory
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pipeline. Architectural patiems such as the "lambda architecture” [21] combine batch and stream processing
systems to implement multiple paths of computation: a streaming fast path for timely approximate results, and a
batch offline path for late accurate results. All these approaches suffer from high latency (imposed by batches),
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Recently a new class of data-intensive appl

Models and Issues in Data Stream Systems *

Brian Babcock ~ Shivnath Babu ~Mayur Datar  Rajeev Motwani  Jennifer Widom

Department of Computer Science
Stanford University
Stanford, CA 94305

{pabcock, shivnath, datar, rajeev, widon}@cs. stanford.edu

Abstract

In this overview paper we motivate the need for and research issues arising from a new model of
data processing. In this model, data does not take the form of persistent relations, but rather arrives in
muliple, continuous, rapid, time-varying data streams. In addition to reviewing past work relevant to
data stream systems and current projects in the are, the paper explores topics in stream query languages,
new requirements and challenges in query processing, and algorithmic issues

Introduction

ons has become widely recognized: applications in which

the data is modeled best not as persistent relations but rather s transient data streams. Examples of such
applications include financial applications, nefwork monitoring, security, telecommunications data manage-
ment, web applications, manufacturing, sensor networks, and others. In the data stream model, individual
data items may be relational tuples, e.g., network measurements, call records, web page visits, sensor read-
ings, and so on. However, their continuous arrival in multiple, rapid, time-varying, possibly unpredictable
and unbounded streams appears 1o yield some fundamentally new research problems

In all of the applications cited above, it is not feasible to simply load the ariving data into a tradi-

tional database management system (DBMS) and operate on it there. Traditional DBMS’s are not designed
for rapid and continuous loading of individual data items, and they do not directly support the continuous
queries [84] that are typical of data stream applications. Furthermore, it is recognized that both approxima-
tion [13] and adaptivity [8] are key ingredients in executing queries and performing other processing (c.g.
data analysis and mining) over rapid data streams, while traditional DBMS’s focus largely on the opposite
goal of precise answers computed by stable query plans.

In this paper we consider fundamental models and issues in developing a general-purpose Data Stream

System (DSMS). We ing such a system at Stanford [82], and we will touch on some

of our own work in this paper. However, we also attempt to provide a general overview of the area, along
with its related and current work. (Any glaring omissions are, naturally, our own fault.)

‘We begin in Section 2 by considering the data stream model and queries over sireams. In this section we
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Abstract

Apache Flink' is an open-source system for processing streaming and batch data. Flink is built on the
Philosophy that many classes of data proc cusing n[rmu'mrwn. including real-time analytics, continu-
ous data pipelines, historic data processing (bat erative algorithms (machine learning, graph
analysis) can be expressed and executed as /uprlmr«l foul toerant datfios. T s paper, we present
Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a
single execution model.

1 Introduction

Datastrcam processng (¢, as cxemplified by (ump]ux event processing ~y\lum«.7 dl\d static (batch) data pro-
cessing (. fied by MPP databases op) red as two very different
types ot applications. They were programmed using dllhum programming mndul:» “and API, and e o
cuted by different systems (e.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams,
Microsoft Streamlnsight, or Streambase versus relational databases or execution engines for Hadoop, including
Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases,
data sizes, and market, while streaming data analysis mostly served specialized application:

i bocomng mor ad more appcnk, oweve, it g e of today's boge-scle daa procesing
usec e data thatis, in reality, over time. streams of data come
for mm,.u rmm web logs, Ap'l]h. tion logs, sensors, or as changes to application state in databases (transaction
log records). Rather than treating the strea cams, today’s setups ignore and timely nature
of data production. Instead, data records e (often antificially) batched into static data sets (c.g.. hourly, dmly. or
monthly chunks) and then ymxcw.d in a time-agnostic fashion. Data collection tools, workflow managers, and
schedulers orchestrate the and processing of batches,in what is actually a continuous data processing
pipeline. Architectural p‘mum& “uch a the ambs achiecure [21] combine batch and stream processing
systems to implement multiple paths of computation: a streaming fast path for timely approximate results, and a
batch offline path for late accurate results. All these approaches suffer from high latency (imposed by batches),

Copyright 2015 IEEE. Personal use of this material is permited. However, permission to repriniepublish this material for
advertising o for creating or lists, or 1o reuse any
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The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale,
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ABSTRACT

Unbounded, unordered, global-scale datasets are increas-
ingly common in day-to-day business (e.g. Web logs, mobile
usage statistics, and sensor networks). At the same time,
consumers of these datasets have evolved sophisticated re-
quirements, such as event-time ordering and windowing by
features of the data themselves, in addition to an insatiable
hunger for faster answers. Meanwhile, practicality dictates
that one can never fully optimize along all dimensions of cor-
rectness, latency, and cost for these types of input. As a re-
sult, data processing practitioners are left with the quandary
of how to reconcile the tensions between these seemingly
competing propositions, often resulting in disparate imple-
mentations and systems.

We propose that a fundamental shift of approach is nec-
essary to deal with these evolved requirements in modern
data processing. We as a field must stop trying to groom un-
bounded datasets into finite pools of information that even-
tually become complete, and instead live and breathe under
the assumption that we will never know if or when we have
seen all of our data, only that new data will arrive, old data
may be retracted, and the only way to make this problem
tractable is via principled abstractions that allow the prac-
titioner the choice of appropriate tradeoffs along the axes of

intereat: earrectnece latenecv and ecnet

1. INTRODUCTION

Modern data processing is a complex and exciting field.
From the scale enabled by MapReduce [16] and its successors
(e.g Hadoop [4], Pig [18], Hive [29], Spark [33]), to the vast
body of work on streaming within the SQL community (e.g.
query systems [1, 14, 15|, windowing [22], data streams [24],
time domains [28], semantic models [9]), to the more recent
forays in low-latency processing such as Spark Streaming
[34], MillWheel, and Storm [5], modern consumers of data
wield remarkable amounts of power in shaping and tam-
ing massive-scale disorder into organized structures with far
greater value. Yet, existing models and systems still fall
short in a number of common use cases.

Consider an initial example: a streaming video provider
wants to monetize their content by displaying video ads and
billing advertisers for the amount of advertising watched.
The platform supports online and offline views for content
and ads. The video provider wants to know how much to bill
each advertiser each day, as well as aggregate statistics about
the videos and ads. In addition, they want to efficiently run
offline experiments over large swaths of historical data.

Advertisers/content providers want to know how often
and for how long their videos are being watched, with which
content /ads, and by which demographic groups. They also
want to know how much thev are beine charged/paid. Thev
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Abstract

In this overview paper we motivate the need for and research issues arising from a new model of
data processing. In this model, data does not take the form of persistent relations, but rather arrives in
muliple, continuous, rapid, time-varying data streams. In addition to reviewing past work relevant to
data stream systems and current projects in the are, the paper explores topics in stream query languages,
new requirements and challenges in query processing, and algorithmic issues

1 Introduction

Recently a new class of data-intensive applications has become widely recognized: applications in which
the data is modeled best not as persistent relations but rather s transient data streams. Examples of such
applications include financial applications, nefwork monitoring, security, telecommunications data manage-
ment, web applications, manufacturing, sensor networks, and others. In the data stream model, individual
data items may be relational tuples, e.g., network measurements, call records, web page visits, sensor read-
ings, and so on. However, their continuous arrival in multiple, rapid, time-varying, possibly unpredictable
and unbounded streams appears 1o yield some fundamentally new research problems

In all of the applications cited above, it is not feasible to simply load the ariving data into a tradi-
tional database management system (DBMS) and operate on it there. Traditional DBMS’s are not designed
for rapid and continuous loading of individual data items, and they do not directly support the continuous
queries [84] that are typical of data stream applications. Furthermore, it is recognized that both approxima-
tion [13] and adaptivity [8] are key ingredients in exccuting queries and performing other processing (c..,
data analysis and mining) over rapid data streams, while traditional DBMS’s focus largely on the opposite
goal of precise answers computed by stable query plans.

In this paper we consider fundamental models and issues in developing a general-purpose Data Stream

System (DSMS). We such a system at Stanford [82], and we will touch on some

of our own work in this paper. However, we also attempt to provide a general overview of the area, along
with its related and current work. (Any glaring omissions are, naturally, our own fault.)
‘We begin in Section 2 by considering the data stream model and queries over sireams. In this section we
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Dataflow Model
Kafka Processor API, Flink Process Function

Actor Model [Hewit et al.]







Dataflow [Dataflow Model]
Storm, Kafka Processor API, Beam




Actor Model [Hewit et al.]



Actors

* Actors are lightweight objects
that encapsulate a *state* and
a “behaviour”.

—————————————

* They share no mutable state
among them, and in fact the

only way to communicate is m

through asynchronous

message passing.
Actor

e To manage the incoming

messages, each actor has a

mailbox.

_______

_______

———————

———————

\—————————/



Actor Model &
Stream Processing

* Immutable state, no-sharing and
asynchronous processing are common
requirements for this Stream
Processing systems, e.g., Flink or

stoom.

* The asynchronous message-passing mailbox !

communication that governs actor ([ N N N . O " Actor |

. . . : | message - S~------ ‘
interactions is a key feature that allows ! i

providing a loose-coupled architecture m e .

where blocking operators are avoided. | ! |

e : ! message ! :

* Indeed, these characteristics are .\ Actor i ' Actor |

particularly interesting for stream N e A /
processing systems, especially for

those where high scalability and

parallel processing of streams are

needed.
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Should | Take a Step back?




A Conceptual View of Kafka

e Producers send messages on

topics
r\k{jf)}{ a Ceobkl’—\
e Consumers read messages Ker _ wolin
from topics Pair§ =, Qﬁ’ A L@
T p'ﬁ\
e Messages are key-value pairs ?mxm \JC@WW
N /
e Topics are streams of @/
messages k j

o Kafka cluster manages topics

curtesy of Emanuele Della Valle - http://emanueledellavalle.org



A Logical View of Kafka

[kufkq Chogkr

Prodocer _ > w" >COMUW
broker 2
| (. J
 Brokers are the main /

storage and messaging  Produeer \ L k
components of the Kafka PR g omg -
cluster - R /7

Pro docer \\1[ bro ku- d

\\ ),

curtesy of Emanuele Della Valle - http://emanueledellavalle.org



Reconciling the two views
of Kafka

e Topics are partitioned across kaﬂ(q Cloter
brokers f W

Pro()UCPA’

 Producers shard messages
over the partitions of a certain
topic

e Typically, the message key /
determines which Partition a |

message is assigned to

P"U dUGU" —~—

curtesy of Emanuele Della Valle - http://emanueledellavalle.org



Topic partitioning invites
distributed consumption

e Different Consumers can read data ¥5m Ker O
from the same Topic [ 4 }
e By default, each porhhor ? Conumer
Consumer will receive all
the messages in the Topic broker 1
’ .
e Multiple Consumers can be [M g MZ} ii’@ 6""'“’% F
combined into a Consumer Group N omey
e Consumer Groups provide ~bro ko 9 Congomer
scaling capabilities b %}/ szwomet )
e Each Consumer is & J
assigned a subset of

Partitions for consumption

curtesy of Emanuele Della Valle - http://emanueledellavalle.org



