
Founda'on of Data Engineering
MCF Riccardo Tommasini

h"p://rictomm.me

riccardo.tommasini@insa-lyon.fr

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 1

http://rictomm.me
mailto:riccardo.tommasini@insa-lyon.fr
http://rictomm.me


- However, the data pipeline has 
been quite an abstract concept so far
- We still miss the elements that 
implements the pipeline (Airflow)
- We did not discuss concrete 
problems like durability and 
distribution

Recap

• The different roles of data engineer and scien3st

• Data quality iden3fies the "zones"

• How do traverse the conceptual zones: pipelines!
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A Conceptual View of a Data Pipeline
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- Once again the big data challenges 
impact the design of our pipelines
- The are all relevant at many levels, 
but volume is the one that caused 
most of the changes
- we need to relax some aspects of 
the data systems 

Towards a Physical View

• Big data have an essen.al role in 
today's pipeline design 

• As we said, this is not just about the 
size!

• Volume: demands scalability of 
storage

• Variety: calls for flexibility of schema

• Velocity: requires con.nuous 
processing
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Towards a Physical View

Before digging into the details of the physical view, we need to 
unveil two premises

• A Distributed System Premise: Big Data imply data par77oning

• A Data System Premise: Big Data dispute data modelling as it 
was
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For very large datasets, or very high query 
throughput, that is not sufficient
- Different partitions can be placed on 
different nodes in a shared-nothing cluster
- Queries that operate on a single partition 
can be independently executed. Thus, 
throughput can be scaled by adding more 
nodes.

Data Par''oning

breaking a large database down into smaller ones

The main reason for wan.ng to par..on data is 
scalability13

13 Designing Data-Intensive Applica3ons
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What to know

• If some par,,ons have more data or queries than others the 
par,,oning is skewed

• A par,,on with dispropor,onately high load is called a hot spot

• For reaching maximum scalability (linear) par,,ons should be 
balanced

Let's consider some par00oning strategies, for simplicity we 
consider Key,Value data.
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Par$$oning Strategies

• Round-robin randomly assigns new keys to the par44ons. 

• Ensures an even distribu4on of tuples across nodes; 

• Range par//oning assigns a con4guous key range to each node. 

• Not necessarily balanced, because data may not be evenly 
distributed

• Hash par//oning uses a hash func4on to determine the target 
par44on. - If the hash func4on returns i, then the tuple is placed
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Data Modeling

It is the process of defining the structure 
of the data for the purpose of 

communica4ng11 or to develop an 
informa4on systems12.

12 between components of the informa3on system, how data is stored 
and accessed.

11 between func+onal and technical people to show data needed for 
business processes
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What is a data model?

• A data model represents the structure 
and the integrity of the data elements of 
a (single) applica8ons 2 

• Data models provide a framework for 
data to be used within informa8on 
systems by giving specific defini8ons 
and formats.

• The literature of data management is 
rich of data models that aim at providing 
increased expressiveness to the modeller 
and capturing a richer set of seman8cs.
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Data models are perhaps the most 
important part of developing so3ware. 

They have such a profound effect not only 
on how the so3ware is wri;en, but also 
on how we think about the problem that 

we are solving13.

— Mar&n Kleppmann

13 Designing Data-Intensive Applica3ons
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Any Example?
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Conceptual model is typically created by Business 
stakeholders. The purpose is to organize, scope and define 
business concepts and rules. Definitions are most important 
this level.
Logical model is typically created by Data Architects. The 
purpose is to developed technical map of rules and data 
structures. Business rules, relationships, attribute become 
visible. Conceptual definitions become metadata.
Physical model is typically created by DBA and developers. 
The purpose is actual implementation of the database. Trade-
offs are explored by in terms of data structures and algorithms.

Level of Data Modeling

Conceptual: The data model defines 
WHAT the system contains.

Logical: Defines HOW the system should 
be implemented regardless of the DBMS. 

Physical: This Data Model describes HOW 
the informa5on system will be 
implemented using a specific technology 
14.

14 physical
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The variety of data available 
today encourages the design and 
development of dedicated data 
models and query languages that 
can improve both BI as well as 
the engineering process itself.

A Closer Look15

15 slides & video by Donna Burbank

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 16

https://www.slideshare.net/Dataversity/data-modeling-for-big-data
https://www.dataversity.net/ldm-webinar-data-modeling-big-data/
http://rictomm.me


Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 17

http://rictomm.me


Conceptual

• Seman'c Model (divergent)

• Describes an enterprise in terms of the language it uses (the 
jargon).

• It also tracks inconsistencies, i.e., seman'c conflicts 

• Architectural Model (convergent)

• More fundamental, abstract categories across enterprise 
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Since it has a physical bias, 
you might be tempted to 
confuse this with the physical 
model, but this is wrong. 

Logical

Already bound to a technology, it typically refers already to 
implementa7on details

• Rela&onal

• Hierarchical

• Key-Value

• Object-Oriented

• Graph
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Physical

The physical level describes how data are Stored on a device.

• Data formats

• Distribu.on

• Indexes

• Data Par..ons

• Data Replica.ons

...an you are in the Big Data World
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Towards a Physical View

Before digging into the details of the physical view, we need to 
unveil two premises

• A Distributed System Premise: CAP Theorem

• A Data System Premise: NoSQL%20SQL.md)
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CAP Theorem (Brewer’s Theorem)
It is impossible for a distributed computer system to simultaneously provide all three of 
the following guarantees:

• Consistency: all nodes see the same data at the same .me

• Availability: Node failures do not prevent other survivors from con.nuing to operate 
(a guarantee that every request receives a response whether it succeeded or failed)

• Par11on tolerance: the system con.nues to operate despite arbitrary par..oning 
due to network failures (e.g., message loss)

A distributed system can sa0sfy any two of these guarantees at the same 0me but not 
all three.
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The network is not reliable

In a distributed system, *a network (of networks) * failures can, and 
will, occur.

Since We cannot neglect Par//on Tolerance the remaining op/on 
is choosing between Consistency and Availability. 
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We cannot neglect Par--on Tolerance

Not necessarily in a mutually exclusive manner:

• CP: A par**oned node returns

• the correct value

• a *meout error or an error, otherwise

• AP: A par**oned node returns the most recent version of the 
data, which could be stale.
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Implica(ons of CAP Theorem

• change the transac,onality gurantees

• redesign the data workflow ()

• reimagine the data processing systems (noSQL)
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The name “NoSQL” is unfortunate, since it 
doesn’t actually refer to any particular 
technology—it was originally intended simply 
as a catchy Twitter hashtag for a meetup on 
open source, distributed, non-relational 
databases in 2009 Cf Pramod J. Sadalage 
and Martin Fowler: NoSQL Distilled. Addison-
Wesley, August 2012. ISBN: 
978-0-321-82662-6

The Advent of NoSQL

Google, Amazon, Facebook, and DARPA 
all recognised that when you scale 

systems large enough, you can never put 
enough iron in one place to get the job 

done (and you wouldn’t want to, to 
prevent a single point of failure). 

Once you accept that you have a 
distributed system, you need to give up 

consistency or availability, which the 
fundamental transacFonality of tradiFonal 

RDBMSs cannot abide.
 --Cedric Beust
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- Big Data: need for greater 
scalability than relational databases 
can easily achieve in write
 - Open Source: a widespread 
preference for free and open source 
software 

The Reasons Behind

• Queryability: need for specialised query opera3ons that are not 
well supported by the rela3onal model

• Schemaless: desire for a more dynamic and expressive data 
model than rela3onal

• Flexibility: need to accomodate the "schema on read" 
phylosophy
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Object-Rela+onal Mismatch

Most applica+on development today is done in object-oriented 
programming languages

An awkward transla+on layer is required between the objects in 
the applica4on code and the database model of tables, rows, and 
columns

Object-rela+onal mapping (ORM) frameworks like Hibernate try to 
mild the mismatch, but they can’t completely hide the differences
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the idea of NOSQL actually 
originates in the late 60s 
together with the raise of the 
raise of object-oriented 
languages, but become 
popular later.

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 30

http://rictomm.me


Shall we rethink the three-layered 
modelling for Big Data?

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 31

http://rictomm.me


Designing NoSQL Data 
Structures

• NoSQL data structures driven by applica7on 
design.

• Need to take into account necessary CRUD 
opera7ons

• To embed or not to imbed. That is the 
ques7on!

• Rule of thumb is to imbed whenever 
possible.

• No modelling standards or CASEcase tools!

case computer aided so.ware engineering
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Data Modeling for Big Data

• Conceptual Level remains:

• ER, UML diagram can s4ll be used for no SQL as they output a model that 
encompasses the whole company.

• Phsyical Level remains: NoSQL solu4ons oCen expose internals for obtaining flexibility, 
e.g., 

• Key-value stores API

• Column stores

• Log structures

• Logical level no longer make sense. Schema on read focuses on the query side._
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NoSQL Familty

Kinds of NoSQL (2/4)

NoSQL solu*ons fall into four major areas:

• Key-Value Store

• A key that refers to a payload (actual content / data)

• Examples: MemcacheDB, Azure Table Storage, Redis, HDFS

• Column Store 

• Column data is saved together, as opposed to row data

• Super useful for data analyKcs

• Examples: Hadoop, Cassandra, Hypertable

Kinds of NoSQL (4/4)

• Document / XML / Object Store

• Key (and possibly other indexes) point at a serialized object

• DB can operate against values in document

• Examples: MongoDB, CouchDB, RavenDB

• Graph Store

• Nodes are stored independently, and the relaEonship between nodes (edges) are stored with data

• Examples: AllegroGraph, Neo4j
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Complexity Across Families
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a natural evolutionary path 
exists from simple key-value 
stores to the highly 
complicated graph databases, 
as shown in the following 
diagram:

Dependencies Across Families
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SQL vs NoSQL

SQL databases NoSQL databases

Triggered the need of rela/onal databases Triggered by the storage needs of Web 2.0 companies 
such as Facebook,Google and Amazon.com

Well structured data Not necessarily well structured – e.g., pictures, 
documents, web page descrip/on, video clips, etc.

Focus on data integrity focuses on availability of data even in the presence of 
mul/ple failures

Mostly Centralised spread data across many storage systems with a high 
degree of replica/on.

ACID proper/es should hold ACID proper/es may not hold[^62]
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NoSQL & CAP Theorem
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The OLD ACID Model

•  ACID, which stands for Atomicity, Consistency, Isola8on, and Durability1-1(app://obsidian.md/
index.html#fn-1-799ed3e7c985b657)

•  Atomicity refers to something that cannot be broken down into smaller parts.

• It is not about concurrency (which comes with the I)

•  Consistency (overused term), that here relates to the data invariants (integrity would be a beNer term 
IMHO)

•  Isola/on means that concurrently execu8ng transac8ons are isolated from each other.

• Typically associated with serializability, but there weaker op8ons.

•  Durability means (fault-tolerant) persistency of the data, once the transac8on is completed.

•  ^ The terms was coined in 1983 by Theo Härder and Andreas Reuter 6(app://obsidian.md/
index.html#fn-6-799ed3e7c985b657)
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Ra#onale to Change

• It’s ok to use stale data (Accoun2ng systems do this all the 2me. 
It’s called “closing out the books.”) ; 

• It’s ok to give approximate answers

• Use resource versioning -> say what the data really is about – no 
more, no less

• the value of x is 5 at 2me T
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The New BASE Model

BASE(Basically Available, So2-State, Eventually Consistent)

• Basic Availability: fulfill request, even in par3al consistency.

• So/ State: abandon the consistency requirements of the ACID model pre@y much completely

• Eventual Consistency: delayed consistency, as opposed to immediate consistency of the ACID 
proper3es67.

• purely aliveness guarantee (reads eventually return the requested value); but

• does not make safety guarantees, i.e.,

• an eventually consistent system can return any value before it converges

67 at some point in the future, data will converge to a consistent state; 
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ACID vs. BASE trade-off

No general answer to whether your applica/on needs an ACID versus BASE 
consistency model.

Given BASE ’s loose consistency, developers need to be more knowledgeable and 
rigorous about consistent data if they choose a BASE store for their applica?on.

Planning around BASE limita.ons can some.mes be a major disadvantage when 
compared to the simplicity of ACID transac.ons.

A fully ACID database is the perfect fit for use cases where data reliability and 
consistency are essen6al.
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Extra Reads

• History of Data Models by Ilya Katsov

• Life beyond Distributed Transac:ons
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Refining the Ini+al View
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A Simplified view
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Our Physical View
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Our Physical View

Riccardo Tommasini - riccardo.tommasini@insa-lyon.fr - @rictomm 49

http://rictomm.me


Our Physical View
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Our Physical View
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