
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 7: Normalization

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan7.2Database System Concepts - 7th Edition

Outline

§ Features of Good Relational Design
§ Functional Dependencies
§ Decomposition Using Functional Dependencies
§ Normal Forms
§ Functional Dependency Theory
§ Algorithms for Decomposition using Functional Dependencies
§ Decomposition Using Multivalued Dependencies
§ More Normal Form
§ Atomic Domains and First Normal Form
§ Database-Design Process
§ Modeling Temporal Data

©Silberschatz, Korth and Sudarshan7.3Database System Concepts - 7th Edition

Overview of Normalization

©Silberschatz, Korth and Sudarshan7.4Database System Concepts - 7th Edition

Overview

§ Normalization is the process of removing redundant data from your
tables to improve storage efficiency, data integrity, and scalability.

§ Normalization generally involves splitting existing tables into multiple
ones, which must be re-joined or linked each time a query is issued.

• This is called “decomposition”

§ Why is relevant?
• Unnormalized data may hide ambiguities, redundancies, and

inconsistencies

• The problem usually happens when an existing system uses
unstructured file, e.g. in MS Excel.

• The relation derived from the user view or data store will most likely
be denormalized.

©Silberschatz, Korth and Sudarshan7.5Database System Concepts - 7th Edition

Features of Good Relational Designs

§ Suppose we combine instructor and department into in_dep, which
represents the natural join on the relations instructor and department

§ There is repetition of information
§ Need to use null values (if we add a new department with no instructors)

©Silberschatz, Korth and Sudarshan7.6Database System Concepts - 7th Edition

A Combined Schema Without Repetition

§ Consider combining relations
• sec_class(sec_id, building, room_number) and
• section(course_id, sec_id, semester, year)
into one relation
• section(course_id, sec_id, semester, year,

building, room_number)
§ No repetition in this case

Not all combined schemas result in repetition of information

©Silberschatz, Korth and Sudarshan7.7Database System Concepts - 7th Edition

Decomposition

§ The only way to avoid the repetition-of-information problem in the in_dep
schema is to decompose it into two schemas – instructor and department
schemas.

§ Not all decompositions are good. Suppose we decompose

employee(ID, name, street, city, salary)
into

employee1 (ID, name)
employee2 (name, street, city, salary)

The problem arises when we have two employees with the same name
§ The next slide shows how we lose information -- we cannot reconstruct

the original employee relation -- and so, this is a lossy decomposition.

©Silberschatz, Korth and Sudarshan7.8Database System Concepts - 7th Edition

Normalization Theory

§ Decide whether a particular relation R is in “good” form.
§ In the case that a relation R is not in “good” form, decompose it into set

of relations {R1, R2, ..., Rn} such that
• Each relation is in good form
• The decomposition is good (what does it mean?)

©Silberschatz, Korth and Sudarshan7.9Database System Concepts - 7th Edition

A Lossy Decomposition

©Silberschatz, Korth and Sudarshan7.10Database System Concepts - 7th Edition

Lossless Decomposition

§ Let R be a relation schema and let R1 and R2 form a decomposition of R .
That is R = R1 U R2

§ We say that the decomposition is a lossless decomposition if there is
no loss of information by replacing R with the two relation schemas R1
U R2

§ Formally,
Õ R1

(r) Õ R2
(r) = r

§ And, conversely a decomposition is lossy if
r Ì Õ R1

(r) Õ R2
(r) = r

©Silberschatz, Korth and Sudarshan7.11Database System Concepts - 7th Edition

Example of Lossless Decomposition

§ Decomposition of R = (A, B, C)
R1 = (A, B) R2 = (B, C)

©Silberschatz, Korth and Sudarshan7.12Database System Concepts - 7th Edition

Normalization Theory

§ Decide whether a particular relation R is in “good” form.
§ In the case that a relation R is not in “good” form, decompose it into set

of relations {R1, R2, ..., Rn} such that
• Each relation is in good form
• The decomposition is a lossless decomposition

§ Our theory is based on:
• Functional dependencies
• Multivalued dependencies (we won’t discuss them)

©Silberschatz, Korth and Sudarshan7.13Database System Concepts - 7th Edition

Functional Dependencies

§ There are usually a variety of constraints (rules) on the data in the real
world.

§ For example, some of the constraints that are expected to hold in a
university database are:
• Students and instructors are uniquely identified by their ID.
• Each student and instructor has only one name.
• Each instructor and student is (primarily) associated with only one

department.
• Each department has only one value for its budget, and only one

associated building.

©Silberschatz, Korth and Sudarshan7.14Database System Concepts - 7th Edition

Functional Dependencies (Cont.)

§ An instance of a relation that satisfies all such real-world constraints is
called a legal instance of the relation;

§ A legal instance of a database is one where all the relation instances are
legal instances

§ Constraints on the set of legal relations.
§ Require that the value for a certain set of attributes determines uniquely

the value for another set of attributes.
§ A functional dependency is a generalization of the notion of a key.

©Silberschatz, Korth and Sudarshan7.15Database System Concepts - 7th Edition

Functional Dependencies Definition

§ Let R be a relation schema
a Í R and b Í R

§ The functional dependency
a ® b

holds on R if and only if for any legal relations r(R), whenever any two
tuples t1 and t2 of r agree on the attributes a, they also agree on the
attributes b. That is,

t1[a] = t2 [a] Þ t1[b] = t2 [b]

§ Example: Consider r(A,B) with the following instance of r.

§ On this instance, B ® A hold; A ® B does NOT hold,

1 4
1 5
3 7

©Silberschatz, Korth and Sudarshan7.16Database System Concepts - 7th Edition

Closure of a Set of Functional Dependencies

§ Given a set F set of functional dependencies, there are certain other
functional dependencies that are logically implied by F.
• If A ® B and B ® C, then we can infer that A ® C
• etc.

§ The set of all functional dependencies logically implied by F is the
closure of F.

§ We denote the closure of F by F+.

©Silberschatz, Korth and Sudarshan7.17Database System Concepts - 7th Edition

Keys and Functional Dependencies

§ K is a superkey for relation schema R if and only if K ® R
§ K is a candidate key for R if and only if

• K ® R, and
• for no a Ì K, a ® R

§ Functional dependencies allow us to express constraints that cannot be
expressed using superkeys. Consider the schema:

in_dep (ID, name, salary, dept_name, building, budget).
We expect these functional dependencies to hold:

dept_name® building
ID à building

but would not expect the following to hold:
dept_name ® salary

©Silberschatz, Korth and Sudarshan7.18Database System Concepts - 7th Edition

Use of Functional Dependencies

§ Functional Dependencies are a form of constraint.
§ We use functional dependencies to:

• To test relations to see if they are legal
§ If a relation r is legal under a set F of functional dependencies,

we say that r satisfies F.
• To specify constraints on the set of legal relations

§ We say that F holds on R if all legal relations on R satisfy the set
of functional dependencies F.

§ Note: A specific instance of a relation schema may satisfy a functional
dependency even if the functional dependency does not hold on all legal
instances.
• For example, a specific instance of instructor may, by chance, satisfy

name ® ID.

©Silberschatz, Korth and Sudarshan7.19Database System Concepts - 7th Edition

Trivial Functional Dependencies

§ A functional dependency is trivial if it is satisfied by all instances of a
relation

§ Example:
• ID, name ® ID
• name ® name

§ In general, a ® b is trivial if b Í a

©Silberschatz, Korth and Sudarshan7.20Database System Concepts - 7th Edition

Lossless Decomposition

§ We can use functional dependencies to show when certain
decomposition are lossless.

§ For the case of R = (R1, R2), we require that for all possible relations r on
schema R

r = ÕR1 (r) ÕR2 (r)
§ A decomposition of R into R1 and R2 is lossless decomposition if at least

one of the following dependencies is in F+:
• R1 Ç R2 ® R1

• R1 Ç R2 ® R2

§ The above functional dependencies are a sufficient condition for lossless
join decomposition; the dependencies are a necessary condition only if all
constraints are functional dependencies

©Silberschatz, Korth and Sudarshan7.21Database System Concepts - 7th Edition

Example

§ R = (A, B, C)
F = {A ® B, B ® C)

§ R1 = (A, B), R2 = (B, C)
• Lossless decomposition:

R1 Ç R2 = {B} and B ® BC
§ R1 = (A, B), R2 = (A, C)

• Lossless decomposition:
R1 Ç R2 = {A} and A ® AB

§ Note:
• B ® BC

is a shorthand notation for
• B ® {B, C}

©Silberschatz, Korth and Sudarshan7.22Database System Concepts - 7th Edition

Dependency Preservation

§ Testing functional dependency constraints each time the database is
updated can be costly

§ It is useful to design the database in a way that constraints can be
tested efficiently.

§ If testing a functional dependency can be done by considering just one
relation, then the cost of testing this constraint is low

§ When decomposing a relation it is possible that it is no longer possible
to do the testing without having to perform a Cartesian Produced.

§ A decomposition that makes it computationally hard to enforce
functional dependency is said to be NOT dependency preserving.

©Silberschatz, Korth and Sudarshan7.23Database System Concepts - 7th Edition

Dependency Preservation Example

§ Consider a schema:
dept_advisor(s_ID, i_ID, department_name)

§ With function dependencies:
i_ID ® dept_name
s_ID, dept_name ® i_ID

§ In the above design we are forced to repeat the department name once
for each time an instructor participates in a dept_advisor relationship.

§ To fix this, we need to decompose dept_advisor
§ Any decomposition will not include all the attributes in

s_ID, dept_name ® i_ID
§ Thus, the composition NOT be dependency preserving

©Silberschatz, Korth and Sudarshan7.24Database System Concepts - 7th Edition

Steps of
Normalization

©Silberschatz, Korth and Sudarshan7.25Database System Concepts - 7th Edition

Normal Forms

§ First Normal Form (1NF)

§ Second Normal Form (2NF)

§ Third Normal Form (3NF)

§ Boyce-Codd Normal Form (BCNF)

§ Fourth Normal Form (4NF)

§ Fifth Normal Form (5NF)

§ Domain Key Normal Form (DKNF)

In practice, 1NF, 2NF, 3NF, and BCNF are enough for database.
So we will focus on them!

©Silberschatz, Korth and Sudarshan7.26Database System Concepts - 7th Edition

Normal Forms

§ First Normal Form (1NF) – all tables are flat

§ Second Normal Form (2NF)

§ Third Normal Form (3NF)

§ Boyce-Codd Normal Form (BCNF)

§ Fourth Normal Form (4NF)

§ Fifth Normal Form (5NF)

§ Domain Key Normal Form (DKNF)

In practice, 1NF, 2NF, 3NF, and BCNF are enough for database.
So we will focus on them!

©Silberschatz, Korth and Sudarshan7.27Database System Concepts - 7th Edition

Normal Forms

§ First Normal Form (1NF)

§ Second Normal Form (2NF)

§ Third Normal Form (3NF)

§ Boyce-Codd Normal Form (BCNF)

§ Fourth Normal Form (4NF)

§ Fifth Normal Form (5NF)

In practice, 1NF, 2NF, 3NF, and BCNF are enough for database.
So we will focus on them!

DB designs based on
functional
dependencies,
intended to prevent
data anomalies

}

©Silberschatz, Korth and Sudarshan7.28Database System Concepts - 7th Edition

Normal Forms

©Silberschatz, Korth and Sudarshan7.29Database System Concepts - 7th Edition

Goals of Normalization

§ Let R be a relation scheme with a set F of functional dependencies.
§ Decide whether a relation scheme R is in “good” form.
§ In the case that a relation scheme R is not in “good” form, need to

decompose it into a set of relation scheme {R1, R2, ..., Rn} such that:
• Each relation scheme is in good form
• The decomposition is a lossless decomposition
• Preferably, the decomposition should be dependency preserving.

©Silberschatz, Korth and Sudarshan7.30Database System Concepts - 7th Edition

First Normal Form (1NF)

The official qualifications for 1NF are:
1. Each attribute name must be unique.
2. Each attribute value must be single.
3. Each row must be unique.
4. There is no repeating groups.

Additional:
• Choose a primary key.
•

Reminder:
• A primary key is unique, not null, unchanged.
• A primary key can be either an attribute or combined attributes.

©Silberschatz, Korth and Sudarshan7.31Database System Concepts - 7th Edition

First Normal Form (formally)

§ Domain is atomic if its elements are considered to be indivisible units
• Examples of non-atomic domains:

§ Set of names, composite attributes
§ Identification numbers like CS101 that can be broken up into parts

§ A relational schema R is in first normal form if the domains of all attributes
of R are atomic

§ Non-atomic values complicate storage and encourage redundant
(repeated) storage of data
• Example: Set of accounts stored with each customer, and set of

owners stored with each account
• We assume all relations are in first normal form (and revisit this in

Chapter 22: Object Based Databases)

©Silberschatz, Korth and Sudarshan7.32Database System Concepts - 7th Edition

First Normal Form (1NF)

©Silberschatz, Korth and Sudarshan7.33Database System Concepts - 7th Edition

Second Normal Form (2NF)

The official qualifications for 2NF are:
1. A table is already in 1NF.
2. All non-key attributes are fully dependent on the primary key.

All partial dependencies (PD) are removed to place in another table.
A PD is a functional dependency whose determinant is part of the primary
key (but not all of it)

©Silberschatz, Korth and Sudarshan7.34Database System Concepts - 7th Edition

Second Normal Form (2NF)

The Course Name depends on only CourseID, a part of the primary key not
the whole primary {CourseID, SemesterID}. It’s called partial dependency.

Solution:
Remove CourseID and Course Name together to create a new table.

©Silberschatz, Korth and Sudarshan7.35Database System Concepts - 7th Edition

Second Normal Form (2NF)

The Course Name depends on only CourseID, a part of the primary key not
the whole primary {CourseID, SemesterID}. It’s called partial dependency.

Solution:
Remove CourseID and Course Name together to create a new table.

©Silberschatz, Korth and Sudarshan7.36Database System Concepts - 7th Edition

Third Normal Form (3NF)

The official qualifications for 3NF are:
1. A table is already in 2NF
2. Non-primary key attributes do not depend on other non-primary key

attributes (i.e. no transitive dependencies)

All transitive dependencies are removed to place in another table.
A Transitive dependency is a functional dependency whose determinant is not
the primary key, part of the primary key, or a candidate key.

Transitive functionality is a functional dependency in which a non-key attribute
is determined by another non-key attribute.

©Silberschatz, Korth and Sudarshan7.37Database System Concepts - 7th Edition

Third Normal Form

§ A relation schema R is in third normal form (3NF) if for all:
a ® b in F+

at least one of the following holds:
• a ® b is trivial (i.e., b Î a)
• a is a superkey for R
• Each attribute A in b – a is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

©Silberschatz, Korth and Sudarshan7.38Database System Concepts - 7th Edition

Third Normal Form (3NF)

©Silberschatz, Korth and Sudarshan7.39Database System Concepts - 7th Edition

Second Normal Form (2NF)

©Silberschatz, Korth and Sudarshan7.40Database System Concepts - 7th Edition

3NF Example

§ Consider a schema:
dept_advisor(s_ID, i_ID, dept_name)

§ With function dependencies:
i_ID ® dept_name
s_ID, dept_name ® i_ID

§ Two candidate keys = {s_ID, dept_name}, {s_ID, i_ID }
§ We have seen before that dept_advisor is not in BCNF
§ R, however, is in 3NF

• s_ID, dept_name is a superkey
• i_ID ® dept_name and i_ID is NOT a superkey, but:

§ { dept_name} – {i_ID } = {dept_name } and
§ dept_name is contained in a candidate key

©Silberschatz, Korth and Sudarshan7.41Database System Concepts - 7th Edition

Redundancy in 3NF

§ Consider the schema R below, which is in 3NF

§ What is wrong with the table?

• R = (J, K, L)
• F = {JK ® L, L ® K }
• And an instance table:

• Repetition of information
• Need to use null values (e.g., to represent the relationship l2, k2

where there is no corresponding value for J)

©Silberschatz, Korth and Sudarshan7.42Database System Concepts - 7th Edition

Boyce-Codd Normal Form

§ The official qualifications for BCNF are:
1. A table is already in 3NF.
2. All determinants must be superkeys.
3. All determinants that are not superkeys are removed to place in

another table.

§ K is a superkey for relation R if K functionally determines all of R.

§ K is a (candidate)key for R if K is a superkey, but no proper subset of K
is a superkey.

©Silberschatz, Korth and Sudarshan7.43Database System Concepts - 7th Edition

Boyce-Codd Normal Form

§ A relation schema R is in BCNF with respect to a set F of functional
dependencies if for all functional dependencies in F+ of the form

a ® b
where a Í R and b Í R, at least one of the following holds:
• a ® b is trivial (i.e., b Í a)
• a is a superkey for R

©Silberschatz, Korth and Sudarshan7.44Database System Concepts - 7th Edition

Boyce-Codd Normal Form (Cont.)

§ Example schema that is not in BCNF:
in_dep (ID, name, salary, dept_name, building, budget)

because :
• dept_name® building, budget

§ holds on in_dep
§ but

• dept_name is not a superkey
§ When decompose in_dept into instructor and department

• instructor is in BCNF
• department is in BCNF

©Silberschatz, Korth and Sudarshan7.45Database System Concepts - 7th Edition

Decomposing a Schema into BCNF

§ Let R be a schema R that is not in BCNF. Let a ®b be the FD that
causes a violation of BCNF.

§ We decompose R into:
• (a U b)
• (R - (b - a))

§ In our example of in_dep,
• a = dept_name
• b = building, budget
and in_dep is replaced by
• (a U b) = (dept_name, building, budget)
• (R - (b - a)) = (ID, name, dept_name, salary)

©Silberschatz, Korth and Sudarshan7.46Database System Concepts - 7th Edition

Example

§ R = (A, B, C)
F = {A ® B, B ® C)

§ R1 = (A, B), R2 = (B, C)
• Lossless-join decomposition:

R1 Ç R2 = {B} and B ® BC
• Dependency preserving

§ R1 = (A, B), R2 = (A, C)
• Lossless-join decomposition:

R1 Ç R2 = {A} and A ® AB
• Not depend ency preserving

(cannot check B ® C without computing R1 R2)

©Silberschatz, Korth and Sudarshan7.47Database System Concepts - 7th Edition

Example

§ Key: {Student, Course}
§ Functional Dependency:

• {Student, Course} ->Teacher
• Teacher -> Course

§ Problem: Teacher is not a superkey but determines Course.

©Silberschatz, Korth and Sudarshan7.48Database System Concepts - 7th Edition

Example

©Silberschatz, Korth and Sudarshan7.49Database System Concepts - 7th Edition

BCNF and Dependency Preservation

§ It is not always possible to achieve both BCNF and dependency
preservation

§ Consider a schema:
dept_advisor(s_ID, i_ID, department_name)

§ With function dependencies:
i_ID ® dept_name
s_ID, dept_name ® i_ID

§ dept_advisor is not in BCNF
• i_ID is not a superkey.

§ Any decomposition of dept_advisor will not include all the attributes in
s_ID, dept_name ® i_ID

§ Thus, the composition is NOT be dependency preserving

©Silberschatz, Korth and Sudarshan7.50Database System Concepts - 7th Edition

Comparison of BCNF and 3NF

§ If a relation is in BCNF it is in 3NF (since in BCNF one of the first two
conditions above must hold).

§ Third condition is a minimal relaxation of BCNF to ensure dependency
preservation (will see why later).

§ Advantages to 3NF over BCNF. It is always possible to obtain a 3NF
design without sacrificing losslessness or dependency preservation.

§ Disadvantages to 3NF.
• We may have to use null values to represent some of the possible

meaningful relationships among data items.
• There is the problem of repetition of information.

©Silberschatz, Korth and Sudarshan7.51Database System Concepts - 7th Edition

How good is BCNF?

§ There are database schemas in BCNF that do not seem to be
sufficiently normalized

§ Consider a relation
inst_info (ID, child_name, phone)

• where an instructor may have more than one phone and can have
multiple children

• Instance of inst_info

©Silberschatz, Korth and Sudarshan7.52Database System Concepts - 7th Edition

§ There are no non-trivial functional dependencies and therefore the
relation is in BCNF

§ Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999, we
need to add two tuples

(99999, David, 981-992-3443)
(99999, William, 981-992-3443)

How good is BCNF? (Cont.)

©Silberschatz, Korth and Sudarshan7.53Database System Concepts - 7th Edition

§ It is better to decompose inst_info into:
• inst_child:

• inst_phone:

§ This suggests the need for higher normal forms, such as Fourth
Normal Form (4NF), which we shall see later

Higher Normal Forms

©Silberschatz, Korth and Sudarshan7.54Database System Concepts - 7th Edition

Design Goals

§ Goal for a relational database design is:
• BCNF.
• Lossless join.
• Dependency preservation.

§ If we cannot achieve this, we accept one of
• Lack of dependency preservation
• Redundancy due to use of 3NF

§ Interestingly, SQL does not provide a direct way of specifying functional
dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test, (and
currently not supported by any of the widely used databases!)

§ Even if we had a dependency preserving decomposition, using SQL we
would not be able to efficiently test a functional dependency whose left
hand side is not a key.

©Silberschatz, Korth and Sudarshan7.56Database System Concepts - 7th Edition

Testing for BCNF

§ To check if a non-trivial dependency a®b causes a violation of BCNF
1. compute a+ (the attribute closure of a), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.

§ Simplified test: To check if a relation schema R is in BCNF, it suffices to
check only the dependencies in the given set F for violation of BCNF,
rather than checking all dependencies in F+.
• If none of the dependencies in F causes a violation of BCNF, then

none of the dependencies in F+ will cause a violation of BCNF either.
§ However, simplified test using only F is incorrect when testing a relation

in a decomposition of R
• Consider R = (A, B, C, D, E), with F = { A ® B, BC ® D}

§ Decompose R into R1 = (A,B) and R2 = (A,C,D, E)
§ Neither of the dependencies in F contain only attributes from

(A,C,D,E) so we might be mislead into thinking R2 satisfies BCNF.
§ In fact, dependency AC ® D in F+ shows R2 is not in BCNF.

©Silberschatz, Korth and Sudarshan7.57Database System Concepts - 7th Edition

Testing Decomposition for BCNF

§ Either test Ri for BCNF with respect to the restriction of F+ to Ri (that
is, all FDs in F+ that contain only attributes from Ri)

§ Or use the original set of dependencies F that hold on R, but with the
following test:

§ for every set of attributes a Í Ri, check that a+ (the attribute
closure of a) either includes no attribute of Ri- a, or includes all
attributes of Ri.

• If the condition is violated by some a ® b in F+, the dependency
a ® (a+ - a) Ç Ri

can be shown to hold on Ri, and Ri violates BCNF.
• We use above dependency to decompose Ri

To check if a relation Ri in a decomposition of R is in BCNF

©Silberschatz, Korth and Sudarshan7.58Database System Concepts - 7th Edition

BCNF Decomposition Algorithm

result := {R };
done := false;
compute F +;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let a ® b be a nontrivial functional dependency that
holds on Ri such that a ® Ri is not in F +,

and a Ç b = Æ;
result := (result – Ri) È (Ri – b) È (a, b);

end
else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

©Silberschatz, Korth and Sudarshan7.59Database System Concepts - 7th Edition

Example of BCNF Decomposition

§ class (course_id, title, dept_name, credits, sec_id, semester, year,
building, room_number, capacity, time_slot_id)

§ Functional dependencies:
• course_id→ title, dept_name, credits
• building, room_number→capacity
• course_id, sec_id, semester, year→building, room_number,

time_slot_id
§ A candidate key {course_id, sec_id, semester, year}.
§ BCNF Decomposition:

• course_id→ title, dept_name, credits holds
§ but course_id is not a superkey.

• We replace class by:
§ course(course_id, title, dept_name, credits)
§ class-1 (course_id, sec_id, semester, year, building,

room_number, capacity, time_slot_id)

©Silberschatz, Korth and Sudarshan7.60Database System Concepts - 7th Edition

BCNF Decomposition (Cont.)

§ course is in BCNF
• How do we know this?

§ building, room_number→capacity holds on class-1
• but {building, room_number} is not a superkey for class-1.
• We replace class-1 by:

§ classroom (building, room_number, capacity)
§ section (course_id, sec_id, semester, year, building,

room_number, time_slot_id)
§ classroom and section are in BCNF.

©Silberschatz, Korth and Sudarshan7.61Database System Concepts - 7th Edition

Overall Database Design Process

§ R could have been generated when converting E-R diagram to a set
of tables.

§ R could have been a single relation containing all attributes that are of
interest (called universal relation).

§ Normalization breaks R into smaller relations.
§ R could have been the result of some ad hoc design of relations,

which we then test/convert to normal form.

We have assumed schema R is given

©Silberschatz, Korth and Sudarshan7.62Database System Concepts - 7th Edition

ER Model and Normalization

§ When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not need
further normalization.

§ However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other attributes of the
entity
• Example: an employee entity with

§ attributes
department_name and building,

§ functional dependency
department_name® building

§ Good design would have made department an entity
§ Functional dependencies from non-key attributes of a relationship set

possible, but rare --- most relationships are binary

©Silberschatz, Korth and Sudarshan7.63Database System Concepts - 7th Edition

Denormalization for Performance

§ May want to use non-normalized schema for performance
§ For example, displaying prereqs along with course_id, and title requires

join of course with prereq
§ Alternative 1: Use denormalized relation containing attributes of course

as well as prereq with all above attributes
• faster lookup
• extra space and extra execution time for updates
• extra coding work for programmer and possibility of error in extra

code
§ Alternative 2: use a materialized view defined a course prereq

• Benefits and drawbacks same as above, except no extra coding work
for programmer and avoids possible errors

©Silberschatz, Korth and Sudarshan7.64Database System Concepts - 7th Edition

Other Design Issues

§ Some aspects of database design are not caught by normalization
§ Examples of bad database design, to be avoided:

Instead of earnings (company_id, year, amount), use
• earnings_2004, earnings_2005, earnings_2006, etc., all on the

schema (company_id, earnings).
§ Above are in BCNF, but make querying across years difficult and

needs new table each year
• company_year (company_id, earnings_2004, earnings_2005,

earnings_2006)
§ Also in BCNF, but also makes querying across years difficult and

requires new attribute each year.
§ Is an example of a crosstab, where values for one attribute

become column names
§ Used in spreadsheets, and in data analysis tools

©Silberschatz, Korth and Sudarshan7.65Database System Concepts - 7th Edition

End of Chapter 7

