
Relational DBs (PostgreSQL)
Lab. 02

Data Engineering
LTAT.02.007

Ass Prof. Riccardo Tommasini
Fabiano Spiga, Hassan Eldeeb, Mohamed Ragab

https://courses.cs.ut.ee/2020/dataeng

https://courses.cs.ut.ee/2020/dataeng

● Mohamed Ragab, PhD Candidate, Starting
3rd year.

● Masters in Information Systems, “Trust
management in Social Networks”.

● My PhD Centered around “Large Graph
Processing, Querying and Optimizations”.

● I also work on Benchmarking Big Data
engines (Spark) for Processing Large graph
Datasets.

https://bigdata.cs.ut.ee/mohamed-ragab

https://bigdata.cs.ut.ee/mohamed-ragab

Lab Agenda

• What is the Relational Model?
• What is Relational DBs?!
• What is DBMS With Examples?
• What is PostgreSQL?
• SQL language
• Data Definition Lang. DDL(Create DB, Create Tables,..)
• Data Query Lang. DQL (Selections, Projections, Sorting,

Filtering, SQL Joins,..)
• Data Manipulation Language DML (Insert, Update,

Delete)

What is Relational Model?
• RELATIONAL MODEL (RM) represents

the database as a collection of
relations.
• A relation is nothing but a “table” of

values.
• Every row in the table represents a

collection of related data values.
• These rows in the table denote a real-

world entity or relationship.

The Relational Model Cont.

• The data are represented as a set of
relations.
• In the relational model, data are stored

as tables (Conceptually).
• However, the physical storage of the

data is independent of the way the data
are logically organized.

https://www.guru99.com/relational-data-model-dbms.html

https://www.guru99.com/relational-data-model-dbms.html

Relational Model Concepts

• Tables(Relations)
• Attributes (Fields)
• Tuples (Rows)
• Relation Schema(Table name +

attributes)
• Degree (# attributes)
• Cardinality (# of rows)
• Relation key
• Attribute(s) that uniquely identify each

tuple in a relation .
https://en.wikipedia.org/wiki/Relational_database

https://en.wikipedia.org/wiki/Relational_database

Database Management Systems (DBMSs)

• A software package designed to define, manipulate, retrieve and
manage data in a database.

And Many More…

What is PostgreSQL?

• PostgreSQL is an advanced, enterprise-class,
and open-source relational database
system.
• It supports both SQL (relational) and JSON

(non-relational) querying.
• It is highly stable database with more than

20years of development by the open-
source community.

https://www.postgresqltutorial.com/what-is-postgresql /

https://www.postgresqltutorial.com/what-is-postgresql%20/
https://www.postgresqltutorial.com/what-is-postgresql%20/

Common Use cases of PostgreSQL

• A robust database in many applications
• PostgreSQL is primarily used as a robust back-end database that

powers many dynamic websites and web applications.

• General purpose transaction database
• Large corporations and startups alike use PostgreSQL as primary

databases to support their applications and products.

• Geospatial database
• PostgreSQL with the PostGIS extension supports geospatial

databases for geographic information systems (GIS).

https://postgis.net/

PostgreSQL Language Support

Connecting to DB server

Connect using Client

Client GUI

Terminal/CMD

Application

https://www.postgresqltutorial.com/connect-to-postgresql-database/

DB Server

https://www.postgresqltutorial.com/connect-to-postgresql-database/

How To Connect to PostgreSQL

• Using the PSQL Shell
• Or the command prompt after adding psql to your path (environment variables)

• Using the pgAdmin (The GUI to manage PostgreSQL DBs)

• Using other third-party client GUI softwares.

https://www.postgresqltutorial.com/connect-to-postgresql-database/

https://www.postgresqltutorial.com/connect-to-postgresql-database/

1- PSQL Shell

• To get more familiar with PSQL SHELL commands, You can follow this link:
(https://www.postgresql.org/docs/current/app-psql.html)

https://www.postgresql.org/docs/current/app-psql.html

2. pgAdmin: the GUI of PostgreSQL

https://www.pgadmin.org/download/

https://www.pgadmin.org/download/

3. Other GUI Client Options

● Paxa/postbird
○ Open source PostgreSQL GUI client for

macOS, Linux and Windows
○ https://github.com/paxa/postbird

● Beekeeper Studio
○ Open Source SQL Editor and Database

Manager
○ https://www.beekeeperstudio.io/

https://github.com/paxa/postbird
https://www.beekeeperstudio.io/

What is SQL?

● SQL stands for Structured Query Language.
● It is the standard language for relational database

management systems.
● SQL statements are used to perform tasks such as

update data on a database, or retrieve data from
a database.

● Most of the common relational database
management systems that use SQL .

How SQL Works ?

Creating a Database

CREATE DATABASE Dbname;

Example:

CREATE DATABASE tartupurchases;

• Let’s Try it on Jupyter Notebook ----------------
>

Create our first Table (Customer)

CREATE TABLE table_name (column_Name + DataType + constraints if any)

Example:
CREATE TABLE Customer (
id INT PRIMARY KEY NOT NULL,
name TEXT NOT NULL,
country Text NOT NULL,
email Text)

PostgreSQL Data Types https://www.postgresql.org/docs/9.5/datatype.html

Customer
- id [INT] PRIMARY KEY NOT NULL

- name [TEXT] NOT NULL

- country [TEXT] NOT NULL

- email [TEXT]

https://www.postgresql.org/docs/9.5/datatype.html

Load Some data to the table (Insert)
- Not our focus though!!
INSERT INTO customer (id, name,
country, email)
VALUES (1, “Mohamed Ragab”,
“Egypt”, “ragab@ut.ee”)

- Use the “Mockrow” website for
generating mock data
(https://www.mockaroo.com/)

https://www.mockaroo.com/

Query your Table (get All customers)

- To Fetch/Retrieve data from DB Table we use:

SELECT * FROM table_name;
- ‘*’ means get all columns from that table.

Example:
SELECT * FROM customer;

Query your Table (project on some fields)

● Projection retrieves only the specified columns.

SELECT
col_name1, col_name2,…col_name_n

FROM table_name;

SELECT name, country FROM customer;

Sorting results (ORDER BY)

● Use ORDER BY clause to sort results by some
columns.

SELECT * FROM customer ORDER BY name ASC

SELECT * FROM customer ORDER BY name DESC

● Take Care of ASC, and DESC for Ascending and
Descending sortings.

Unique Results (DISTINCT)

• The SELECT DISTINCT statement is used to return only
distinct (different) values.

SELECT DISTINCT column1, column2, ...
FROM table_name;

Example:
SELECT DISTINCT country from customer;

Filtering the Results (WHERE)
• The WHERE clause is used to filter records.
• It‘s used to extract only those records that fulfill a specified

condition.

SELECT column1, column2, ...
FROM table_name
WHERE condition;

Example:
Get only the customers who have emails (filter out who don't have).

SELECT * FROM customer WHERE email != '' ;

SQL AND, OR and NOT Operators

• The WHERE clause can be combined with AND, OR, and NOT operators.
SELECT column1, column2, ...
FROM table_name
WHERE condition1 AND condition2 AND condition3 ...;

SELECT column1, column2, ...
FROM table_name
WHERE condition1 OR condition2 OR condition3 ...;

Example:
SELECT * FROM customer WHERE country = 'Egypt' AND email !=''

Pagination in SQL ("LIMIT" and "OFFSET")

• LIMIT and OFFSET allow you to retrieve
just a portion of the rows that are
generated by the rest of the query.

SELECT select_list
FROM table_expression
[LIMIT { number | ALL }] [OFFSET number]

• Example in The Notebook ☺

Aggregations and GROUP BY

• The GROUP BY statement groups rows that have
the same values into summary rows.
• Example: "Find the number of customers in each

country".

• The GROUP BY statement is often used with
aggregate functions (COUNT, MAX, MIN, SUM,
AVG) to group the result-set by one or more
columns.

SELECT column_name(s)
FROM table_name
GROUP BY column_name(s);

GROUP BY … HAVING

• The HAVING clause specifies a search condition for a
group or an aggregate.
• The HAVING clause is often used with the GROUP BY

clause to filter groups or aggregates based on a
specified condition.

SELECT column1, aggregate_function (column2)
FROM table_name
GROUP BY column1
HAVING condition;

RELATIONSHIPS

RELATIONSHIPS

• ONE-to-ONE Relationship: occurs when
one record in a table is associated with one and
only one record in another table.

• Example:
• In a school database:
• Each student has only one student ID.

• Each student ID is assigned to only one
person.

https://fmhelp.filemaker.com/help/18/fmp/en/index.html#page/FMP_Help%2Frelationships.html%23

RELATIONSHIPS Cont.
• ONE-to-Many Relationship: occurs

when one record in a table can be associated with
one or more records in another table.

• Example:
- Customer can make several/multiple Orders
- While, Order can be made by only one Customer.

● Put the PK in the one-side as a FK in the many-
side.

Question?!!!

Why we can’t make it the other way around !!?

https://fmhelp.filemaker.com/help/18/fmp/en/FMP_Help/glossary.html
https://fmhelp.filemaker.com/help/18/fmp/en/FMP_Help/glossary.html

RELATIONSHIPS Cont.

• Many-to-Many Relationship: occurs
when multiple records in a table are associated
with multiple records in another table.

• Example:
• Student can attend many classes.

• Meanwhile, Class is attended by many students

Question?!!!

- Assume we have “grade” attribute, so to which
table we should we put it ?

https://fmhelp.filemaker.com/help/18/fmp/en/FMP_Help/glossary.html
https://fmhelp.filemaker.com/help/18/fmp/en/FMP_Help/glossary.html

Bring Data From Multiple Tables
(SQL JOINS)

SQL JOINS

• Joins are one of the key elements of
relational DBs.
• They allow us to retrieve data from

multiple tables at once.
• Let’s go over some different types

of Joins.

Joins are like Sets Operations

• Sets in python: unordered groups of unique
elements.
• JOINS treat rows of data as if they were Sets.
• We can Perform Set operations on the tables.

• Example: Intersect
• Set intersection is the elements common to

two sets.
• Here the intersection is {Drek}

INNER JOIN

• The SQL INNER JOIN is similar to the Set intersection.
• INNER JOIN selects rows from table1 and table2 where they match the

selecting column.

Result

LEFT JOIN

• This selects all rows from the table1 (on the left), the rows from the
table2 (on the right) if they match.
• If they don’t match, the data for the right table is blank (NULLS).

RIGHT JOIN
• Opposite to LEFT JOIN
• This selects all the rows from the table on the right, and then rows from

the left if they match.
• If they don’t match, the data for the table on the left is blank (NULLS).

FULL JOIN

• This selects all rows from both tables, matching them if there is a
match on the selecting column.
• Think of it as a LEFT and a RIGHT join.

JOINS with More types..

SQL Data Updates (UDATE)

● The UPDATE statement is used to modify the existing records in a
table.

UPDATE table_name

SET column1 = value1, column2 = value2, ...

WHERE condition;

Example:

UPDATE customer

SET email = “aisha.kareem@gmail.com”

WHERE id=3;

SQL Data Deletions (DELETE)

● The DELETE statement is used to delete existing
records in a table.

● Note: Be careful when deleting records in a table!
○ Notice the WHERE clause in the DELETE statement.

DELETE FROM table_name WHERE condition;

Example:

DELETE FROM customer WHERE name=”Mohamed Ragab”;

Now, It’s time to say ...

