# Data Mining: Concepts and Techniques (3<sup>rd</sup> ed.) – Chapter 12 –

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University ©2011 Han, Kamber & Pei. All rights reserved.

Outlier and Outlier Analysis



- Outlier Detection Methods
- Statistical Approaches
- Proximity-Base Approaches
- Clustering-Base Approaches
- Classification Approaches
- Mining Contextual and Collective Outliers
- Outlier Detection in High Dimensional Data
- Summary

# What Are Outliers?

- Outlier: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism
  - Ex.: Unusual credit card purchase, sports: Michael Jordon, Wayne Gretzky, ...
- Outliers are different from the noise data
  - Noise is random error or variance in a measured variable
  - Noise should be removed before outlier detection
- Outliers are interesting:
  - They violate the mechanism that generates the normal data
- Applications:
  - Credit card fraud detection
  - Telecom fraud detection
  - Customer segmentation
  - Medical analysis



# **Types of Outliers (I)**

- Global outlier (or point anomaly)
  - Object is O<sub>g</sub> if it significantly deviates from the rest of the data set
  - Ex. Intrusion detection in computer networks
  - Issue: Find an appropriate measurement of deviation
  - To detect global outliers, a critical issue is to find an appropriate measurement of deviation with respect to the application in question.



# **Types of Outliers (II)**

- **Contextual outlier** (or *conditional outlier*)
  - Object is O<sub>c</sub> if it deviates significantly based on a selected context
  - Ex. 25° C in Lyon: outlier? (depending on summer or winter?)
  - Attributes of data objects should be divided into two groups
    - Contextual attributes: defines the context, e.g., time & location
    - Behavioral attributes: characteristics of the object, used in outlier evaluation, e.g., temperature
  - Can be viewed as a generalization of *local outliers*—whose density significantly deviates from its local area
  - Issue: How to define or formulate meaningful context?
    - A straightforward method to formulate a meaningful context imply uses group-by of the contextual attributes as contexts.
    - A more general method uses the proximity of data objects in the space of contextual attributes.

# Types of Outliers (III)

#### Collective Outliers

- A subset of data objects *collectively* deviate significantly from the whole data set, even if the individual data objects may not be outliers
- Applications: E.g., *intrusion detection*:
  - When a number of computers keep sending denial-of-service packages to each other
  - Detection of collective outliers
    - Consider not only behavior of individual objects, but also that of groups of objects
    - Need to have the background knowledge on the relationship among data objects, such as a distance or similarity measure on objects.
- A data set may have multiple types of outlier
- One object may belong to more than one type of outlier



# **Challenges of Outlier Detection**

- Modeling normal objects and outliers properly
  - Hard to enumerate all possible normal behaviors in an application
  - The border between normal and outlier objects is often a gray area
- Application-specific outlier detection
  - Choice of distance measure among objects and the model of relationship among objects are often application-dependent
  - E.g., clinic data: a small deviation could be an outlier; while in marketing analysis, larger fluctuations
- Handling noise in outlier detection
  - Noise may distort the normal objects and blur the distinction between normal objects and outliers. It may help hide outliers and reduce the effectiveness of outlier detection
- Understandability
  - Understand why these are outliers: Justification of the detection
  - Specify the degree of an outlier: the unlikelihood of the object being generated by a normal mechanism

- Outlier and Outlier Analysis
- Outlier Detection Methods



- Statistical Approaches
- Proximity-Base Approaches
- Clustering-Base Approaches
- Classification Approaches
- Mining Contextual and Collective Outliers
- Outlier Detection in High Dimensional Data
- Summary

### **Outlier Detection I: Supervised Methods**

- Modeling outlier detection as a classification problem
  - Samples examined by domain experts used for training & testing
- Methods for Learning a classifier for outlier detection effectively:
  - Model normal objects & report those not matching the model as outliers, or
  - Model outliers and treat those not matching the model as normal
- Challenges
  - Imbalanced classes, i.e., outliers are rare: Boost the outlier class and make up some artificial outliers
  - Catch as many outliers as possible, i.e., recall is more important than accuracy (i.e., not mislabeling normal objects as outliers)

### **Outlier Detection II: Unsupervised Methods**

- Modeling outlier detection as a clustering problem
  - Assume the normal objects are somewhat ``clustered'' into multiple groups, each having some distinct features
  - An outlier is expected to be far away from any groups of normal objects
- Weakness: Cannot detect collective outlier effectively
  - Normal objects may not share any strong patterns, but the collective outliers may share high similarity in a small area
  - Unsupervised methods may have a high false positive rate but still miss many real outliers.
- Many clustering methods can be adapted for unsupervised methods
  - Find clusters, then outliers: not belonging to any cluster
  - Problem 1: Hard to distinguish noise from outliers
  - Problem 2: Costly since first clustering: but far less outliers than normal objects
    - Newer methods: tackle outliers directly

#### **Outlier Detection III: Semi-Supervised Methods**

- Situation: In many applications, the number of labeled data is often small: Labels could be on outliers only, normal objects only, or both
- Semi-supervised outlier detection: Regarded as applications of semisupervised learning
- If some labeled normal objects are available
  - Use the labeled examples and the proximate unlabeled objects to train a model for normal objects
  - Those not fitting the model of normal objects are detected as outliers
- If only some labeled outliers are available, a small number of labeled outliers many not cover the possible outliers well
  - To improve the quality of outlier detection, one can get help from models for normal objects learned from unsupervised methods

# **Outlier Detection (IV): Statistical Methods**

- Statistical methods (also known as model-based methods) assume that the normal data follow some statistical model (a stochastic model)
  - The data not following the model are outliers.
- Example (right figure): First use Gaussian distribution to model the normal data
  - For each object y in region R, estimate g<sub>D</sub>(y), the probability of y fits the Gaussian distribution
  - If g<sub>D</sub>(y) is very low, y is unlikely generated by the Gaussian model, thus an outlier
- e R
  - Effectiveness of statistical methods: highly depends on whether the assumption of statistical model holds in the real data
  - There are rich alternatives to use various statistical models
    - E.g., parametric vs. non-parametric

# **Outlier Detection (V): Proximity-Based Methods**

- An object is an outlier if the nearest neighbors of the object are far away, i.e., the **proximity** of the object is **significantly deviates** from the proximity of most of the other objects in the same data set
- Example (right figure): Model the proximity of an object using its 3 nearest neighbors
  - Objects in region R are substantially different from other objects in the data set.
  - Thus the objects in R are outliers



- The effectiveness of proximity-based methods highly relies on the proximity measure.
- In some applications, proximity or distance measures cannot be obtained easily.
- Often have a difficulty in finding a group of outliers which stay close to each other
- Two major types of proximity-based outlier detection
  - Distance-based vs. density-based

- Outlier and Outlier Analysis
- Outlier Detection Methods
- Statistical Approaches
- Proximity-Base Approaches
- Clustering-Base Approaches
- Classification Approaches
- Mining Contextual and Collective Outliers
- Outlier Detection in High Dimensional Data
- Summary

# **Statistical Approaches**

- Statistical approaches assume that the objects in a data set are generated by a stochastic process (a generative model)
- Idea: learn a generative model fitting the given data set, and then identify the objects in low probability regions of the model as outliers
- Methods are divided into two categories: *parametric* vs. *non-parametric*
- Parametric method
  - Assumes that the normal data is generated by a parametric distribution with parameter  $\boldsymbol{\theta}$
  - The probability density function of the parametric distribution  $f(x, \theta)$  gives the probability that object x is generated by the distribution
  - The smaller this value, the more likely x is an outlier
- Non-parametric method
  - Not assume an a-priori statistical model and determine the model from the input data
  - Not completely parameter free but consider the number and nature of the parameters are flexible and not fixed in advance
  - Examples: histogram and kernel density estimation

#### Parametric Methods I: Detection Univariate Outliers Based on Normal Distribution

- Univariate data: A data set involving only one attribute or variable
- Often assume that data are generated from a normal distribution, learn the parameters from the input data, and identify the points with low probability as outliers



#### Parametric Methods I: Detection Univariate Outliers Based on Normal Distribution

- Ex: Avg. temp.: {24.0, 28.9, 28.9, 29.0, 29.1, 29.1, 29.2, 29.2, 29.3, 29.4}
  - Use the maximum likelihood method to estimate  $\mu$  and  $\sigma$

$$\ln \mathcal{L}(\mu, \sigma^2) = \sum_{i=1}^n \ln f(x_i | (\mu, \sigma^2)) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2$$

 Taking derivatives with respect to μ and σ<sup>2</sup>, we derive the following maximum likelihood estimates

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

• For the above data with n = 10, we have  $\hat{\mu} = 28.61$   $\hat{\sigma} = \sqrt{2.29} = 1.51$ 

■ Then (24 – 28.61) /1.51 = – 3.04 < –3, 24 is an outlier since

 $\mu \pm 3\sigma$  region contains 99.7% data

#### Parametric Methods I: The Grubb's Test

- Univariate outlier detection: The Grubb's test (maximum normed residual test) — another statistical method under normal distribution
  - For each object x in a data set, compute its z-score: x is an outlier if

$$z \ge \frac{N-1}{\sqrt{N}} \sqrt{\frac{t_{\alpha/(2N),N-2}^2}{N-2 + t_{\alpha/(2N),N-2}^2}}$$

where  $t_{\alpha/(2N),N-2}^2$  is the value taken by a t-distribution at a significance level of  $\alpha/(2N)$ , and N is the # of objects in the data set

## Parametric Methods II: Detection of Multivariate Outliers

- Multivariate data: A data set involving two or more attributes or variables
- Transform the multivariate outlier detection task into a univariate outlier detection problem
- Method 1. Compute Mahalaobis distance
  - Let \(\overline{o}\) be the mean vector for a multivariate data set. Mahalaobis distance for an object o to \(\overline{o}\) is MDist(o, \(\overline{o}\)) = (o \(\overline{o}\))^T S -1(o \(\overline{o}\)) where S is the covariance matrix
  - Use the Grubb's test on this measure to detect outliers
- Method 2. Use χ<sup>2</sup> –statistic: χ<sup>2</sup> = Σ<sup>n</sup><sub>i=1</sub> (o<sub>i</sub> E<sub>i</sub>)<sup>2</sup>/E<sub>i</sub>
  where E<sub>i</sub> is the mean of the *i*-dimension among all objects, and n is the dimensionality
  - If  $\chi^2$  –statistic is large, then object  $o_i$  is an outlier

#### **Non-Parametric Methods: Detection Using Histogram**

60%

0

0-1

20%

1-2

<sup>10%</sup> 6.7%

Amount per transaction

2-3

- The model of normal data is learned from the input data without any *a priori* structure.
- Often makes fewer assumptions about the data, and thus can be applicable in more scenarios
- Outlier detection using histogram:



- A transaction in the amount of \$7,500 is an outlier, since only 0.2% transactions have an amount higher than \$5,000
- Problem: Hard to choose an appropriate bin size for histogram
  - Too small bin size  $\rightarrow$  normal objects in empty/rare bins, false positive
  - Too big bin size  $\rightarrow$  outliers in some frequent bins, false negative
- Solution: Adopt kernel density estimation to estimate the probability density distribution of the data. If the estimated density function is high, the object is likely normal. Otherwise, it is likely an outlier.

x \$1000

- Outlier and Outlier Analysis
- Outlier Detection Methods
- Statistical Approaches
- Proximity-Base Approaches



- Classification Approaches
- Mining Contextual and Collective Outliers
- Outlier Detection in High Dimensional Data
- Summary

#### **Proximity-Based Approaches**

- Intuition: Objects that are far away from the others are outliers
- Assumption of proximity-based approach: The proximity of an outlier deviates significantly from that of most of the others in the data set
- Two types of proximity-based outlier detection methods
  - <u>Distance-based outlier detection</u>: An object o is an outlier if its neighborhood does not have enough other points
  - <u>Density-based outlier detection</u>: An object o is an outlier if its density is relatively much lower than that of its neighbors

# **Distance-Based Outlier Detection**

- For each object o, examine the # of other objects in the *r*-neighborhood of o, where *r* is a user-specified **distance threshold**
- An object o is an outlier if most (taking π as a fraction threshold) of the objects in D are far away from o, i.e., not in the r-neighborhood of o

• An object o is a DB(r, 
$$\pi$$
) outlier if

$$\frac{\|\{o'|dist(o,o') \le r\}\|}{\|D\|} \le \pi$$

- Equivalently, one can check the distance between *o* and its *k*-th nearest neighbor  $o_k$ , where  $k = \lceil \pi ||D|| \rceil$ . *o* is an outlier if dist(*o*,  $o_k$ ) > r
- Efficient computation: Nested loop algorithm
  - For any object o<sub>i</sub>, calculate its distance from other objects, and count the # of other objects in the r-neighborhood.
  - If  $\pi$ >n other objects are within r distance, terminate the inner loop
  - Otherwise,  $o_i$  is a DB(r,  $\pi$ ) outlier
- Efficiency: Actually CPU time is not O(n<sup>2</sup>) but linear to the data set size since for most non-outlier objects, the inner loop terminates early

#### **Density-Based Outlier Detection**

- Local outliers: Outliers comparing to their local neighborhoods, instead of the global data distribution
- In Fig., o<sub>1</sub> and o2 are local outliers to C<sub>1</sub>, o<sub>3</sub> is a global outlier, but o<sub>4</sub> is not an outlier. However, proximity-based clustering cannot find o<sub>1</sub> and o<sub>2</sub> are outlier (e.g., comparing with O<sub>4</sub>).



- Intuition (density-based outlier detection): The density around an outlier object is significantly different from the density around its neighbors
- Method: Use the relative density of an object against its neighbors as the indicator of the degree of the object being outliers
- *k*-distance of an object o, dist<sub>k</sub>(o): distance between o and its k-th NN
- *k*-distance neighborhood of o,  $N_k(o) = \{o' | o' in D, dist(o, o') \le dist_k(o)\}$ 
  - N<sub>k</sub>(o) could be bigger than k since multiple objects may have identical distance to o

#### **Local Outlier Factor: LOF**



 LOF (Local outlier factor) of an object o is the average of the ratio of local reachability of o and those of o's k-nearest neighbors

$$LOF_k(o) = \frac{\sum_{o' \in N_k(o)} \frac{lrd_k(o')}{lrd_k(o)}}{\|N_k(o)\|} = \sum_{o' \in N_k(o)} lrd_k(o') \cdot \sum_{o' \in N_k(o)} reachdist_k(o' \leftarrow o)$$

- The lower the local reachability density of o, and the higher the local reachability density of the kNN of o, the higher LOF
- This captures a local outlier whose local density is relatively low comparing to the local densities of its kNN

- Outlier and Outlier Analysis
- Outlier Detection Methods
- Statistical Approaches
- Proximity-Base Approaches
- Clustering-Base Approaches
- Classification Approaches
- Mining Contextual and Collective Outliers
- Outlier Detection in High Dimensional Data
- Summary

# **Clustering-Based Outlier Detection (1 & 2):**

Not belong to any cluster, or far from the closest one

- An object is an outlier if (1) it does not belong to any cluster, (2) there is a large distance between the object and its closest cluster, or (3) it belongs to a small or sparse cluster
- Case I: Not belong to any cluster
  - Identify animals not part of a flock: Using a densitybased clustering method such as DBSCAN
- Case 2: Far from its closest cluster
  - Using k-means, partition data points of into clusters
  - For each object o, assign an outlier score based on its distance from its closest center
    - If dist(o, c<sub>o</sub>)/avg\_dist(c<sub>o</sub>) is large, likely an outlier
- Ex. Intrusion detection: Consider the similarity between data points and the clusters in a training data set
  - Use a training set to find patterns of "normal" data, e.g., frequent itemsets in each segment, and cluster similar connections into groups
  - Compare new data points with the clusters mined—Outliers are possible attacks

 $\bigcirc a$ 

 $a^{\circ}$ 

0+0 0+0

b

#### **Clustering-Based Method: Strength and Weakness**

- Strength
  - Detect outliers without requiring any labeled data
  - Work for many types of data
  - Clusters can be regarded as summaries of the data
  - Once the cluster are obtained, need only compare any object against the clusters to determine whether it is an outlier (fast)
- Weakness
  - Effectiveness depends highly on the clustering method used—they may not be optimized for outlier detection
  - High computational cost: Need to first find clusters
  - A method to reduce the cost: Fixed-width clustering
    - A point is assigned to a cluster if the center of the cluster is within a pre-defined distance threshold from the point
    - If a point cannot be assigned to any existing cluster, a new cluster is created and the distance threshold may be learned from the training data under certain conditions

- **Outlier and Outlier Analysis**
- **Outlier Detection Methods**
- **Statistical Approaches**
- **Proximity-Base Approaches**
- **Clustering-Base Approaches**
- Classification Approaches



- Mining Contextual and Collective Outliers
- Outlier Detection in High Dimensional Data
- Summary

## **Classification-Based Method I: One-Class Model**

- Idea: Train a classification model that can distinguish "normal" data from outliers
- A brute-force approach: Consider a training set that contains samples labeled as "normal" and others labeled as "outlier"
  - But, the training set is typically heavily biased: # of "normal" samples likely far exceeds # of outlier samples
  - Cannot detect unseen anomaly



- One-class model: A classifier is built to describe only the normal class.
  - Learn the decision boundary of the normal class using classification methods such as support vector machine
  - Any samples that do not belong to the normal class (not within the decision boundary) are declared as outliers
  - Adv: can detect new outliers that may not appear close to any outlier objects in the training set
  - Extension: Normal objects may belong to multiple classes

#### **Classification-Based Method II: Semi-Supervised Learning**

 Semi-supervised learning: Combining classificationbased and clustering-based methods

Method

- Using a clustering-based approach, find a large cluster, C, and a small cluster, C<sub>1</sub>
- Since some objects in C carry the label "normal", a treat all objects in C as normal
- Use the one-class model of this cluster to identify normal objects in outlier detection
- Since some objects in cluster C<sub>1</sub> carry the label "outlier", declare all objects in C<sub>1</sub> as outliers
- Any object that does not fall into the model for C (such as a) is considered an outlier as well
- Comments on classification-based outlier detection methods
  - Strength: Outlier detection is fast
  - Bottleneck: Quality heavily depends on the availability and quality of the training set, but often difficult to obtain representative and highquality training data



objects with lable "normal"

- objects with label "outlier"
- objects without label

- Outlier and Outlier Analysis
- Outlier Detection Methods
- Statistical Approaches
- Proximity-Base Approaches
- Clustering-Base Approaches
- Classification Approaches
- Mining Contextual and Collective Outliers
- Outlier Detection in High Dimensional Data
- Summary

#### Mining Contextual Outliers I: Transform into Conventional Outlier Detection

- If the contexts can be clearly identified, transform it to conventional outlier detection
  - 1. Identify the context of the object using the contextual attributes
  - 2. Calculate the outlier score for the object in the context using a conventional outlier detection method
- Ex. Detect outlier customers in the context of customer groups
  - Contextual attributes: age group, postal code
  - Behavioral attributes: # of trans/yr, annual total trans. amount
- Steps: (1) locate c's context, (2) compare c with the other customers in the same group, and (3) use a conventional outlier detection method
- If the context contains very few customers, generalize contexts
  - Ex. Learn a mixture model U on the contextual attributes, and another mixture model V of the data on the behavior attributes
  - Learn a mapping p(V<sub>i</sub>|U<sub>j</sub>): the probability that a data object o belonging to cluster Vi on the contextual attributes is generated by cluster Uj on the behavior attributes

• Outlier score: 
$$S(\boldsymbol{o}) = \sum_{U_j} p(\boldsymbol{o} \in U_j) \sum_{V_i} p(\boldsymbol{o} \in V_i) p(V_i | U_j)$$

### Mining Contextual Outliers II: Modeling Normal Behavior with Respect to Contexts

- In some applications, one cannot clearly partition the data into contexts
  - Ex. if a customer suddenly purchased a product that is unrelated to those she recently browsed, it is unclear how many products browsed earlier should be considered as the context
- Model the "normal" behavior with respect to contexts
  - Using a training data set, train a model that predicts the expected behavior attribute values with respect to the contextual attribute values
  - An object is a contextual outlier if its behavior attribute values significantly deviate from the values predicted by the model
- Using a prediction model that links the contexts and behavior, these methods avoid the explicit identification of specific contexts
- Methods: A number of classification and prediction techniques can be used to build such models, such as regression, Markov Models, and Finite State Automaton

- Outlier and Outlier Analysis
- Outlier Detection Methods
- Statistical Approaches
- Proximity-Base Approaches
- Clustering-Base Approaches
- Classification Approaches
- Mining Contextual and Collective Outliers
- Outlier Detection in High Dimensional Data
- Summary



## Summary

- Types of outliers
  - global, contextual & collective outliers
- Outlier detection
  - supervised, semi-supervised, or unsupervised
- Statistical (or model-based) approaches
- Proximity-base approaches
- Clustering-base approaches
- Classification approaches
- Mining contextual and collective outliers
- Outlier detection in high dimensional data

## **References (I)**

- B. Abraham and G.E.P. Box. Bayesian analysis of some outlier problems in time series. *Biometrika*, 66:229–248, 1979.
- M. Agyemang, K. Barker, and R. Alhajj. A comprehensive survey of numeric and symbolic outlier mining techniques. *Intell. Data Anal.*, 10:521–538, 2006.
- F. J. Anscombe and I. Guttman. Rejection of outliers. *Technometrics*, 2:123–147, 1960.
- D. Agarwal. Detecting anomalies in cross-classified streams: a bayesian approach. *Knowl. Inf. Syst.*, 11:29–44, 2006.
- F. Angiulli and C. Pizzuti. Outlier mining in large high-dimensional data sets. *TKDE*, 2005.
- C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional data. *SIGMOD'01*
- R.J. Beckman and R.D. Cook. Outlier...s. *Technometrics*, 25:119–149, 1983.
- I. Ben-Gal. Outlier detection. In *Maimon O. and Rockach L. (eds.) Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers,* Kluwer Academic, 2005.
- M. M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander. LOF: Identifying density-based local outliers. *SIGMOD'00*
- D. Barbar´a, Y. Li, J. Couto, J.-L. Lin, and S. Jajodia. Bootstrapping a data mining intrusion detection system. *SAC'03*
- Z. A. Bakar, R. Mohemad, A. Ahmad, and M. M. Deris. A comparative study for outlier detection techniques in data mining. *IEEE Conf. on Cybernetics and Intelligent Systems*, 2006.
- S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with randomization and a simple pruning rule. *KDD'03*
- D. Barbara, N. Wu, and S. Jajodia. Detecting novel network intrusion using bayesian estimators. SDM'01
- V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing Surveys, 41:1–58, 2009.
- D. Dasgupta and N.S. Majumdar. Anomaly detection in multidimensional data using negative selection algorithm. In CEC'02

### References (2)

- E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In *Proc. 2002 Int. Conf. of Data Mining for Security Applications*, 2002.
- E. Eskin. Anomaly detection over noisy data using learned probability distributions. *ICML'00*
- T. Fawcett and F. Provost. Adaptive fraud detection. *Data Mining and Knowledge Discovery*, 1:291–316, 1997.
- V. J. Hodge and J. Austin. A survey of outlier detection methologies. *Artif. Intell. Rev.*, 22:85–126, 2004.
- D. M. Hawkins. *Identification of Outliers*. Chapman and Hall, London, 1980.
- Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers. *Pattern Recogn. Lett.*, 24, June, 2003.
- W. Jin, K. H. Tung, and J. Han. Mining top-n local outliers in large databases. *KDD'01*
- W. Jin, A. K. H. Tung, J. Han, and W. Wang. Ranking outliers using symmetric neighborhood relationship. PAKDD'06
- E. Knorr and R. Ng. A unified notion of outliers: Properties and computation. *KDD'97*
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. *VLDB'98*
- E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms and applications. VLDB J., 8:237– 253, 2000.
- H.-P. Kriegel, M. Schubert, and A. Zimek. Angle-based outlier detection in high-dimensional data. *KDD'08*
- M. Markou and S. Singh. Novelty detection: A review—part 1: Statistical approaches. *Signal Process.*, 83:2481–2497, 2003.
- M. Markou and S. Singh. Novelty detection: A review—part 2: Neural network based approaches. Signal Process., 83:2499–2521, 2003.
- C. C. Noble and D. J. Cook. Graph-based anomaly detection. *KDD'03*

### References (3)

- S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast outlier detection using the local correlation integral. *ICDE'03*
- A. Patcha and J.-M. Park. An overview of anomaly detection techniques: Existing solutions and latest technological trends. *Comput. Netw.*, 51, 2007.
- X. Song, M. Wu, C. Jermaine, and S. Ranka. Conditional anomaly detection. *IEEE Trans. on Knowl. and Data Eng.*, 19, 2007.
- Y. Tao, X. Xiao, and S. Zhou. Mining distance-based outliers from large databases in any metric space. *KDD'06*
- N. Ye and Q. Chen. An anomaly detection technique based on a chi-square statistic for detecting intrusions into information systems. *Quality and Reliability Engineering International*, 17:105–112, 2001.
- B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish, C. Faloutsos, and A. Biliris. Online data mining for coevolving time sequences. *ICDE'00*